

KANNUR UNIVERSITY

FOURYEAR UNDERGRADUATE PROGRAMME

SYLLABUS

COMPUTATIONAL MATHEMATICS HONOURS/HONOURS WITH RESEARCH

(Effective from 2024 admissions)

KANNUR UNIVERSITY VISION AND MISSION STATEMENTS

Vision

To establish a teaching, residential and affiliating University and to provide equitable andjust access to quality higher education involving the generation, dissemination and a critical application of knowledge with special focus on the development of higher education in Kasargode and Kannur Revenue Districts and the Manandavady Taluk of Wayanad Revenue District.

Mission

- ➤ To produce and disseminate new knowledge and to find novel avenues for application of such knowledge.
- To adopt critical pedagogic practices which uphold scientific temper, the un compromised spirit of enquiry and the right to dissent.
- ➤ To up hold democratic, multicultural, secular, environmental and gender sensitive values as the foundational principles of higher education and to cater to the modern notions of equity, social justice and merit in all educational endeavors.
- To affiliate colleges and other institutions of higher learning and to monitor academic, ethical, administrative and infrastructural standards in such institutions.
- ➤ To build stronger community networks based on the values and principles of higher education and to ensure the region's intellectual integration with national vision and international standards.
- To associate with the local self-governing bodies and other statutory as well as non-governmental organizations for continuing education and also for building public awareness on important social, cultural and other policy issues.

INTRODUCTION

Kannur University - Four-Year Undergraduate Programme: Backdrop and Context

The implementation of the Four-Year Undergraduate Programme (FYUGP) has been driven by the pressing need to address contemporary challenges ensuring responsive changes to the evolving needs of students, industry, and society at large. Recognizing the curriculum as the cornerstone of any education system, it requires regular refinement to align with evolving socio-economic factors. Higher education must provide students with practical and technical skills relevant to the infields of interest, necessitating the development to a joboriented curriculum. Despite significant increases in access and expansion of higher education over the years, concerns persist regarding the quality and relevance of educational outcomes, particularly in terms of employability skills. As the world becomes increasingly interconnected, our education system must evolve to instill 21st century skills, enabling students not only to survive but to thrive in this dynamic environment. Moreover, there is a growing need for higher education institutions to embrace social responsibility and contribute to the development of a knowledge society capable of driving sustainable development through innovation. With the central objective of fostering a robust knowledge society to support a knowledge economy, the Government of Kerala has initiated steps to reform higher education. Accordingly, the commissions were established to suggest reforms in higher education policy, legal and regulatory mechanisms, and evaluation and examination systems. It is within this context that a comprehensive reform of the undergraduate curriculum has been proposed, leading to the restructuring of the Four-Year Undergraduate Programme.

KANNUR UNIVERSITY PROGRAMME OUTCOMES

PO1: Critical Thinking and Problem-Solving-

Apply critical thinking skills to analyze information and develop effective problemsolving strategies for tackling complex challenges.

PO2: Effective Communication and Social Interaction-

Proficiently express ideas and engage in collaborative practices, fostering effective interpersonal connections.

PO3: Holistic Understanding-

Demonstrate a multidisciplinary approach by integrating knowledge across various domains for a comprehensive understanding of complex issues.

PO4: Citizenship and Leadership-

Exhibit a sense of responsibility, actively contribute to the community, and show case leadership qualities to shape a just and inclusive society.

PO5: Global Perspective-

Develop a broad awareness of global issues and an understanding of diverse perspectives, preparing for active participation in a globalized world.

PO6: Ethics, Integrity and Environmental Sustainability-

Uphold high ethical standards in academic and professional endeavors, demonstrating integrity and ethical decision-making. Also acquire an understanding of environmental issues and sustainable practices, promoting responsibility towards ecological wellbeing.

PO7: Lifelong Learning and Adaptability-

Cultivate a commitment to continuous self-directed learning, adapting to evolving challenges, and acquiring knowledge throughout life.

PREFACE

This syllabus serves as a roadmap for academic journey, outlining the courses and objectives designed to cultivate mathematical proficiency and intellectual curiosity.

Mathematics is not merely a collection of techniques and formulae; it is a language for expressing and understanding patterns, structures, and relationships in the world around us. It is the universal language which forms the bedrock of scientific inquiry and technological advancement. As a student embarks on this educational voyage, he/she will explore the beauty and power of mathematical ideas while developing problem-solving skills that are invaluable in both academic and real-world contexts.

This program is structured to provide a comprehensive foundation in core mathematical disciplines, including Algebra, Number Theory, Numerical Analysis, Calculus, Geometry, Abstract Algebra, Linear Algebra, Analysis, Topology, Discrete Mathematics and Programming Languages like Scilab, Python etc. Through a combination of theoretical study and practical applications, students can deepen their understanding of fundamental concepts and sharpen their ability to apply them creatively to solve complex problems.

In addition to core courses, students have the opportunity to tailor their studies through a variety of elective options, allowing to pursue specialized interests in areas such as Artificial Intelligence, Data Science, Optimization, Cryptography, Fuzzy Mathematics, Automata, Mathematical Economics and more, which are necessary to instill 21st century skills.

Also, there is provision to align with interests and career aspirations. Whether passion lies in pure mathematics, applied mathematics, or interdisciplinary fields, one can find courses from Multi-disciplinary/Value-added/Skill-Enhancement courses to suit his/her academic trajectory. Further, assignments, seminars and project work promote self-study and develop research mind in students.

The UG Board of Studies in Mathematics puts forward this syllabus for Four Year Under-Graduate Programme in **Computational Mathematics** for implementation from 2024 onwards. We thank all those who helped us by giving critical suggestions for improvement.

Dr. C.P.Santhosh,

Chairman, UG Board of Studies in Mathematics Kannur University

PROGRAMME SPECIFIC OUTCOMES

- **PSO1:** Understand basic concepts and tools of Mathematical logic, Set theory, Numbertheory, Geometry, Calculus, Vector calculus, Algebra, Abstract structures, Linear Algebra, Laplace transforms, Differential equations, Numerical Analysis, Fourier series, Real Analysis, Complex Analysis, and applications of these concepts in Computer Science.
- **PSO2:** Develop abstract reasoning and critical thinking skills necessary for advanced mathematical study and applications in various fields like Artificial Intelligence, Data Science, Machine Learning etc.
- **PSO3:** Develop proficiency in defining, formulating and solving problems by applying appropriate mathematical methods and principles.
- **PSO4:** Formulate real world problems into mathematical models and find solutions.
- **PSO5:** Develop proficiency in using mathematical software and programming languages.
- **PSO6:** Understand the interdisciplinary nature of Mathematics and apply Mathematical concepts and techniques to solve problems in other sciences.
- **PSO7:** Get equipped with basic research skills.

KANNURUNIVERSITY

FOUR YEAR UNDERGRADUATE PROGRAMME

COMPUTATIONAL MATHEMATICS

HONOURS/HONOURS WITH RESEARCH PROGRAMME

STRUCTURE

B.Sc. Computational Mathematics Pathway Courses (2024 admission onwards)

	(2024 admission onwards)									
Sl. No.	Level	Course Code	Semester	Name of course	Credits	Major Pathway Courses				
1	100-199	KU1DSCCMT101	I	COMPUTATIONAL CALCULUS-I	4					
2	100-199	KU1DSCCMT111	I	FUNDAMENTALS OF MATHEMATICS	4					
3	100-199	KU1DSCCMT112	I	MATHEMATICAL STAISTICS-I	4					
4	100-199	KU1DSCCMT113	I	MATHEMATICS FOR DATASCIENCE - I	4					
5	100-199	KU1DSCCMT114	I	MATHEMATICS FOR ECONOMICS - I	4					
6	100-199	KU2DSCCMT101	II	COMPUTATIONAL CALCULUS-II	4					
7	100-199	KU2DSCCMT111	II	BASIC COMPUTATIONAL MATHEMATICS	4					
8	100-199	KU2DSCCMT112	II	MATHEMATICAL STAISTICS - II	4					
9	100-199	KU2DSCCMT113	II	MATHEMATICS FOR DATASCIENCE – II	4					
10	100-199	KU2DSCCMT114	II	MATHEMATICS FOR ECONOMICS - II	4					
11	200-299	KU3DSCCMT201	III	INTRODUCTION TO GEOMETRY AND ANALYSIS	4					
12	200-299	KU3DSCCMT202	III	ORDINARY DIFFERENTIAL EQUATIONS	4					
13	200-299	KU3DSCCMT211	III	MATHEMATICAL STAISTICS - III	4					
14	200-299	KU3DSCCMT212	III	GRAPH THEORY	4					
15	200-299	KU3DSCCMT213	III	PROGRAMMING IN PYTHON	4					

16	200-299	KU3DSCCMT214	III	MATHEMATICS FOR DATASCIENCE - III	4	
17	200-299	KU3DSCCMT215	III	MATHEMATICS FOR ECONOMICS - III	4	
18	200-299	KU4DSCCMT201	IV	LAPLACE TRANSFORMS, FOURIER SERIES AND PARTIAL DIFFERENTIAL EQUATIONS		
19	200-299	KU4DSCCMT202	IV	GROUP THEORY	4	
20	200-299	KU4DSCCMT203	IV	MULTIVARIABLE CALCULUS	4	
21	300-399	KU5DSCCMT301	V	REAL ANALYSIS – I	4	
22	300-399	KU5DSCCMT302	V	ALGEBRA AND LINEAR ALGEBRA	4	
23	300-399	KU5DSCCMT303	V	VECTOR CALCULUS	4	
24	300-399	KU5DSECMT301	V	PROGRAMMING USING SCILAB	4	Elective 1
25	300-399	KU5DSECMT302	V	AUTOMATA	4	Elective 2
26	300-399	KU5DSECMT303	V	MATHEMATICAL FINANCE		Elective 3
27	300-399	KU5DSECMT304	V	NUMBER THEORY AND CRYPTOGRAPHY	4	Elective 4
28	300-399	KU6DSCCMT301	VI	COMPUTATIONAL LINEAR ALGEBRA	4	
29	300-399	KU6DSCCMT302	VI	ADVANCED OPTIMIZATION TECHINIQUES	4	
30	300-399	KU6DSCCMT303	VI	NUMERICAL ANALYSIS	4	
31	300-399	KU6DSECMT301	VI	COMPLEX ANALYSIS	4	Elective1
32	300-399	KU6DSECMT302	VI	REAL ANALYSIS – II	4	Elective 2
33	300-399	KU6DSECMT303	VI	METRIC SPACES	4	Elective 3
34	300-399	KU6DSECMT304	VI	MATHEMATICAL ECONOMICS	4	Elective 4
35	400-499	KU7DSCCMT401	VII	ABSTRACT ALGEBRA	4	
36	400-499	KU7DSCCMT402	VII	LINEAR ALGEBRA	4	
37	400-499	KU7DSCCMT403	VII	MATHEMATICAL ANALYSIS	4	
38	400-499	KU7DSCCMT404	VII	TOPOLOGY	4	
39	400-499	KU7DSCCMT405	VII	ADVANCED ORDINARY DIFFERENTIAL EQUATIONS	4	
40	400-499	KU8DSCCMT401	VIII	ADVANCED ABSTRACT ALGEBRA	4	
41	400-499	KU8DSCCMT402	VIII	MEASURE THEORY	4	

42	400-499	KU8DSCCMT403	VIII	ADVANCED MATHEMATICAL ANALYSIS	4	
43	400-499	KU8DSECMT401	VIII	ADVANCED TOPOLOGY	4	Elective 1
44	400-499	KU8DSECMT402	VIII	PARTIAL DIFFERENTIAL EQUATIONS		Elective 2
45	400-499	KU8DSECMT402	VIII		4	27/28/29 Elective(b)
46	400-499	KU8DSECMT403	VIII		4	27/28/29 Elective(c)
47	400-499	KU8DSECMT404	VIII	MOOC/ Online course I	4	27/28/29 Elective(d)
48	400-499	KU8DSECMT405	VIII	MOOC/Online course II	4	27/28/29 Elective(e)
49	400-499	KU8DSECMT406	VIII	MOOC/Online course III	4	27/28/29 Elective(f)
50	400-499	KU8CIPCMT 400	VIII	Capstone Internship Project in Honours Programme in Mathematics		30(a)
51	400-499	KU8PHRCMT400	VIII	Project in Honours with Research Programme in Mathematics	12	30(b)

General Foundation Courses offered by Department of Mathematics Semester Sl. Course Level Course Code NameofCourse Category No. **Credits** LOGIC, LATTICES AND BOOLEAN 100-199 MDC KU1MDCCMT101 Ι 1 ALGEBRA 3 2 100-199 MDC KU1MDCCMT102 I THEORY OF MATRICES 3 3 100-199 MDC KU2MDCCMT101 II NUMERICAL ABILITY 3 100-199 MDC KU2MDCCMT102 II VECTOR ALGEBRA 3 FOUNDATIONS OF HIGHER 5 200-299 **MDC** KU3MDCCMT201 III 3 **MATHEMATICS** 200-299 VAC KU3VACCMT201 Ш 6 PROBABILITY THEORY 3 IV 3 11 200-299 VAC KU4VACCMT201 CODING THEORY COMPLEX NUMBERS AND THEORY OF 200-299 VAC KU4VACCMT202 IV 12 3 **EQUATIONS** 200-299 KU4VACCMT203 IV LINEAR PROGRAMMING 3 13 VAC 15 200-299 SEC KU4SECCMT201 IV LINEAR PROGRAMMING PROBLEMS 3 17 300-399 **SEC** KU5SECCMT301 V MATHEMATICAL TRANSFORMS 3 20 300-399 **SEC** KU6SECCMT301 VI **FUZZY SET THEORY** 3

SEMESTER WISE DISTRIBUTION OF COURSES FOR FOUR YEAR UG PROGRAMME (FYUGP) MATHEMATICS

(2024ADMISSIONONWARDS)

SEMESTER 1

No	Title	Hours/week	Credit	CE	ESE	Total marks
1	AEC1(English)	3	3	25	50	75
2	AEC2(Additional Language)	3	3	25	50	75
3	MDC1	3	3	25	50	75
4	DSC	4	4	30	70	100
5	DSC	4	4	30	70	100
6	DSC	4	4	30	70	100
	Total credits		21			

SEMESTER II

No	Title	Hours/week	Credit	CE	ESE	Total marks
1	AEC3(English)	3	3	25	50	75
2	AEC4(Additional Language)	3	3	25	50	75
3	MDC2	3	3	25	50	75
4	DSC	4	4	30	70	100
5	DSC	4	4	30	70	100
6	DSC	4	4	30	70	100
	Total credits		21			

SEMESTER III

No	Title	Hours/week	Credit	CE	ESE	Total marks
1	MDC3	3	3	25	50	75
2	VAC1	3	3	25	50	75
3	DSC	4	4	30	70	100
4	DSC	4	4	30	70	100
5	DSC	4	4	30	70	100
6	DSC	4	4	30	70	100
	Total credits		22			

SEMESTER IV

No	Title	Hours/week	Credit	CE	ESE	Total marks
1	SEC1	3	3	25	50	75
2	VAC2	3	3	25	50	75
3	VAC3	3	3	25	50	75
4	DSC	4	4	30	70	100
5	DSC	4	4	30	70	100
6	DSC	4	4	30	70	100
	Total credits		21			

SEMESTER V

No	Title	Hours/w eek	Credit	CE	ESE	Total marks
1	SEC2	3	3	25	50	75
2	DSC	4	4	30	70	100
3	DSC	4	4	30	70	100
4	DSC	4	4	30	70	100
5	DSE(Major Elective)	4	4	30	70	100
6	DSE(Major Elective)	4	4	30	70	100
	Total credits		23			

SEMESTER VI

No	Title	Hours/wee k	Credit	CE	ESE	Total marks
1	SEC3	3	3	25	50	75
2	DSC	4	4	30	70	100
3	DSC	4	4	30	70	100
4	DSC	4	4	30	70	100
5	DSE(Major Elective)	4	4	30	70	100
6	DSE(Major Elective)	4	4	30	70	100
7	Internship	2	2			
	Total credits		25			

EXIT WITH UG DEGREE / PROCEED TO FOURTH YEAR WITH 133 CREDITS

23 DSC courses : 23x4=92credits

13 foundation courses (AEC(4),SEC(3),VAC(3),MDC(3)) :13x3=39credits

1 Internship : 2x1 = 2 credits

Total : 133 credits

SEMESTER VII

No	Title	Hours/week	Credit	СЕ	ESE	Total marks
1	DSC	4	4	30	70	100
2	DSC	4	4	30	70	100
3	DSC	4	4	30	70	100
4	DSC	4	4	30	70	100
5	DSC	4	4	30	70	100
	Total credits		20			

SEMESTER VIII

	Total Credit	Total Marks for CE	Total Marks for ESE	Total marks
Project and Courses as per the FYUGP Regulation	24	180	420	600

DISCIPLINE SPECIFIC COURSES

SEMESTER - 1

KU1DSCCMT101: COMPUTATIONAL CALCULUS-I

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
I	DSC	100	KU1DSCCMT101	4	60

Learnii	ng Approach (Ho	ours/ Week)	Mar	Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

Course Description

This course is to introduce the notion of limits, continuity, derivatives, optimization problem, antiderivatives and to discuss applications of differentiation

Course Prerequisite

Functions

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Comprehend exponential functions, inverse functions, logarithmic function and hyperbolic functions	Understand
2	Understand the notion of limit and limit laws	Understand
3	Understand continuity of a function	Understand
4	Comprehend the notion of derivative of a function and differentiation rules	Understand
5	Understand indeterminate forms	Understand
6	Understand the effect of derivative on the shape of graph of a function	Understand Apply
7	Comprehend the antiderivatives	Understand

Mapping of Course Outcomes to PSOs

	PSO 1				PSO 6	
CO 1	√	√	√		√	
CO 2	√	√	√		√	
CO 3	√		√			
CO 4	√	√	√		√	
CO 5	√	√	√			
CO 6	✓	√	√	√		
CO 7	√	√	✓			

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	Function		
	1	Functions	
		a) Exponential functions	
		b) Inverse functions	
I		c) Logarithmic functions	
	2	Limits	14
		a) Limit of a function and limit laws	
		b) Continuity	
		c) Horizontal Asymptotes	
	Differe	ntiation of functions and Extreme values of a function	
	1	Derivatives and rate of change	
II	2	Hyperbolic functions	1.4
11	3	Extreme values of a function	14
	4	Maximum values	
	5	Minimum values	

	6	The Mean Value Theorem			
	Application of derivatives				
III	1	1 Shape of graph of a function			
***	2	Indeterminate forms	14		
		a) L 'Hospital rule			
	Optimization problems and antiderivatives				
IV	1	Optimization problems	13		
	2	Antiderivatives			
	Teach	er Specific Module			
	Directi	ions	5		
V	Summary of curve sketching, graphing with calculus and calculator (Sections 4.5 to 4.6), Illustration of the topic in module I to module IV using software like GeoGebra, Desmos Calculator etc.				

Essential Readings:

1. James Stewart Calculus; Early Transcendentals; 9th Edition; Cengage Learning; 2021.

Module	dule Unit Essential Reading No. Sections		Sections	Remarks
T	1	1	Sections 1.4, 1.5	
1	2	1	Section 2.2,2.3, 2.5, 2.6	
TT	1	1	Section 2.7, 3.11	
II	2	1	Sections 4.1, 4.2	
TTT	1	1	Section 4.3	
III	2	1	Sections 4.4	
IV	1	1	Sections 4.7, 4.9	

Suggested Readings:

- 1. B.S. Grewal; Higher Engineering Mathematics; (43rd edition); Khanna Publishers.
- 2. G.B. Thomas Jr., M.D. Weir and J.R. Hass; Thomas' Calculus: Early Transcendentals (12th edition); Pearson Education.
- 3. H. Anton, I. Bivens and S. Davis; Calculus; 10th edition; Willey.
- 4. S. Narayan and P.K. Mittal; Integral calculus; Revised Edition; S. Chand & Company Ltd.
- 5. S Narayan and P.K. Mittal; Differential calculus; Revised Edition; S. Chand & Company Ltd.

Assessment Rubrics:

E	valuation Type	Marks		
End Sen	nester Evaluation	70		
Continuo	ous Evaluation	30		
a)	Test Paper *	12		
	Assignment	12		
c)	Seminar, Viva-Voce	6		
	Total	100		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU1DSCCMT111: FUNDAMENTALS OF MATHEMATICS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
I	DSC	100	KU1DSCCMT111	4	60

Learning	Approach (Hou	Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	ESE (Hours)
4		1	30	70	100	2

Course Description

This course is to introduce the notion of Functions Different types of functions Relations, Partial Order relations, Well-ordering theorem, Countability and uncountability of sets.

Course Pre-requisite

Sets, Relations and Functions

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concepts of Relations	Understand
2	How to apply induction hypothesis in proof making	Apply
3	Understand the concept of well ordering principle	Understand
4	Understand the concept of cardinality of sets	Understand
5	Comparing the cardinality of two sets	Apply
6	Understand the concept of partially ordered sets	Understand Apply

7	Application of axiom of choice	Apply

Mapping of Course Outcomes to PSOs

	PSO 1		PSO 3			
CO 1	1	✓	✓			
CO 2	1	✓	√	 	✓	
CO 3	1	✓	✓			
CO 4	1	✓	✓			
CO 5	1	✓	✓	 	✓	
CO 6	1	✓	✓			
CO 7	/	✓	/			

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	HOURS	
	Relation	ls	
	1	Relations on sets	
I	2	Types of relations	14
	3	Equivalence relations	
	4	Equivalence classes and partitions of a set	
	Induction	on Principles	
	1	The Induction Principle	
II	2	The Strong Induction Principle	14
	3	The Well-ordering Principle	
	4	Equivalence of the three principles	
	Countal		
III	1	Sets with same cardinality	14

	2	Finite sets		
	3	Countable sets		
	4	Comparing cardinality		
	Order	Relations		
IV	1	Partial and Total Orders	13	
1 V	2	Chains, bounds and maximal elements		
	3	Axiom of Choice and its Equivalents		
	Teache	er Specific Module		
${f v}$	Directions			
*	Functions, One-one, onto functions and bijections, Composition of functions, Inverse of a function, Image of subsets under functions, Inverse image of subsets under functions			

Essential Readings:

1. Ajit Kumar, S. Kumaresan, Bhaba Kumar Sarma; A Foundation Course in Mathematics, 9th Edition; Alpha Science International Ltd.; Oxford, U.K.; 2018.

Module	Unit	Essential Reading No.	Sections	Remarks
I	1 to 4	1	Sections 4.1 to 4.4	
II	1 to 4	1	Sections 5.1 to 5.4	
III	1 to 4	1	Sections 6.1 to 6.4	
IV	1 to 3	1	Sections 7.1 to 7.3	
V		1	Sections 3.1 to 3.4	TSM

Suggested Readings:

- 6. Kenneth Kunen; The Foundation of Mathematics; College Publications 2009
- 7. John Peterson; Building a Foundation in Mathematics; Delmar Cengage Learning 2011.
- 8. K A Stroud; Foundation Mathematics; Bloomsbery; 2009
- 9. S Lipschutz; Set Theory & Related Topic; 2nd Edition; Schoum's Outline Series;

Assessment Rubrics:

Evaluation Type	Marks
End Semester Evaluation	70

ous Evaluation	30
Test Paper *	12
Assignment	12
Seminar, Viva-Voce	6
Total	100

KU1DSCCMT112: MATHEMATICAL STAISTICS - I

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
I	DSC	100	KU1DSCCMT112	4	60

Learning	Approach (Hou	Marks Distribution			Duration of	
Lecture	Practical/ Internship Tutorial		CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

Course Description

This course provides an elementary introduction to probability and statistics with applications. Topics include random variables, probability distribution *Functions*, Mathematical Expectations, Joint Probability Law and Covariance

Course Prerequisite

Set Theory, Multi-Variable calculus

Course Outcomes

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

CO No.	Expected Outcome	Learning Domains
1	Comprehend Basic concepts in Probability	Understand
2	Understand continuous and Discrete Distribution Functions	Understand
3	Understand the Expected value of a Random Variable	Understand
4	Bivariate random variables and joint probability Law	Understand
5	Understand Covariance between two Random variables	Understand
6	Understand Jenson's Inequality	Understand
7	Use software and simulation to do statistics (R).	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
00.1	1		1				
002	1		1		✓		
CO 3	✓		✓			✓	
CO 4	✓		✓				
CO 5	✓		✓		✓		
	✓		✓				
CO 7	✓		✓		1		✓

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	Basic	concepts in Probability	
T	1	a)Random Variables	
1		b)Distribution Functions	. 14
	2	a)Discrete Random Variables and Examples	
II	Conti	nuous Random Variables and Bivariate Distribution	14

	1	a) Continuous Random Variables and Examples					
	2	a) Joint Probability Law					
	Con	ibination of random variables and it's pdf					
	1 a) Transformation of one dimensional Random variables						
III		b) Mathematical Expectation	14				
111		a)Expectation of a function of Random Variables					
	2	b)Addition Theorem of Expectation					
		c)Multiplication Theorem of Expectation					
	Expectation, Covarience and Jenson's Inequality						
IV	1	a)Expectations of a linear combination of Random Variables	13				
		b)Covariance					
	2	a)Jenson's inequality					
	Teac	cher Specific Module					
\mathbf{V}	Directions						
	R pr	ogramming					

Essential Readings:

- 1. S C Gupta & V K Kapoor; Fundamentals of Mathematical Statistics (10th revised edition); S Chand and Sons; 2002
- 2. Peter Dalgard; Introductory Statistics with R; Springer (2008)

Module	Unit	Reference No.	Sections	Remarks
T	1	1	Sections 5.1, 5.2	Proof of all the Theorems in this unit are omitted
1	2	1	Section 5.3	Proof of all the Theorems in this unit are omitted
II	1	1	Section 5.4	Proof of all the Theorems in this unit are omitted, Quartiles omitted
	2	1	Sections 5.5	
III	1	1	Section 5.6, 6.1	
	2	1	Sections 6.2, 6.3, 6.4	

IV	1	1	Sections 6.5, 6.6	Proof of all the Theorems in this unit are omitted
	2	1	Sections 6.7	Proof of all the Theorems in this unit are omitted

Suggested Readings:

- 1. Dennis Wackerly, William Mendenhall Ill and Richard S, Mathematical Statistis with Application (Seventh Edition); Duxbury Press, 2007
- 2. Robert. V. Hogg and Allen T. Craig, Introduction to mathematical Statistics (Fifth Edition); Higher education press, 1978
- 3. G Shankar Rao, probability and statistics for Science and Engineering; University press, 2011
- 4. Maria Dolores Ugarte, Ana F.Militino, Alan T.Amholt Probability and Statistics with R,CRC Press, A Chapman & Hall Book
- 5. Frank S Emmert-Streib, Salissou Moutari, Matthias Dehmer-Mathematical Foundations of Data Science Using R, De Gruyter (2022)
- 6. Meatloaf, Norman S, Probability and Statistics for data Science-math+R+data; CRC press(2020) **Assessment Rubrics:**

	valuation Type	Marks		
	ester Evaluation	70		
	us Evaluation	30		
a) Test Paper *		12		
b)	Assignment	12		
c)	Seminar, Viva-Voce	6		
	Total	100		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (that is, upto fx 99) shall be permitted.

KU1DSCCMT113:MATHEMATICS FOR DATA SCIENCE -I

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
I	DSC	100	KU1DSCCMT113	4	60

Learning	Approach (Hou	Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	СЕ	CE ESE Total		ESE (Hours)
4			30	70	100	2

Course Description

This course is designed to introduce the concept of group theory and to find solutions of system of linear equations. It also deals with extreme value problems and numerical solutions of transcendental equations.

Course Prerequisite

Matrices

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the basic concepts in group theory	Understand

2	Apply matrix operations to solve system of linear equations.	Apply
3	Apply the concept of derivatives to find extreme values.	Apply
4	Understand how to find solutions of transcendental equations.	Understand

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	√		✓				
CO 2	✓	✓		✓		✓	
CO 3	✓				✓		✓
CO 4	✓	✓		✓			

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
I		14	
	1.1	Binary operations	
	1.2	Groups, Sub groups	
	1.3	Cyclic groups	
	1.4	Groups of Permutations, Orbits, Cycles	
	1.5	Rings & Fields (Definition & Examples only)	
II		14	
	2.1	Row-echelon form, Elementary row and column operations	
	2.2	Rank of the matrix	
	2.3	Simultaneous linear equations, Matrix Notations, Theory of solutions	
	2.4	Simplifying operations, Gauss elimination algorithm	
III		Differential Calculus	14
	3.1	Extreme values of functions	
	3.2	The Mean value theorem	
	3.3	Monotonic functions and the first derivative test	
	3.4	Concavity	
IV		Numerical Analysis	13

	4.1	Bisection Method	
	4.2	Regula-falsi method	
	4.3	Newton- Raphson Method	
V		Teacher Specific Module	5
	5.1	Curve sketching, Applied optimization	

Essential Readings

- 1. John B. Fraleigh, A First Course in Abstract Algebra , Seventh edition. Pearson
- 2. Richard Bronson, Schaum's outline of Theory and Problems of Matrix operations , Schaum's outline series, McGraw-Hill
- 3. George B. Thomas, Jr, Mauric D. Weir, Joel Hass, Thomas' Calculus Early transcendentals Twelfth edition
- 4. S.K.R. Iyengar, R. K. Jain Mathematical Methods, Second Edition, Narosa Publications.

Module	Unit	Reference No.	Chapters	Remarks
	1.1	1	Chapter 1; Section 1.2	All proofs are
I	1.2	1	Chapter 1; Section 1.4, 1.5	omitted
•	1.3	1	Chapter 1; Section 1.6	
	1.4 1		Chapter 2; Section 2.8, 2.9	
	1.5	1	Chapter 4; Section 4.18 (Relevant topic)	
**	2.1	2	Related Topics and problems in Chapter 1	
II	2.2	2	Related Topics and problems in Chapter 1	
	2.3	2	Related Topics and problems in Chapter 2	
	2.4	2	Related Topics and problems in Chapter 2	
	3.1	3	Chapter 4; Section 4.1	All proofs are
Ш	3.2		Chapter 4; Section 4.2	omitted
	3.3	3	Chapter 4; Section 4.3	
	3.4 3 Chapter 4; Section 4.4(Relevant topic		Chapter 4; Section 4.4(Relevant topics)	
	4.1	4	Chapter 3; Section 3.3	
IV	4.2	4	Chapter 3; Section 3.4	
	4.3	4	Chapter 3; Section 3.5	
V		1	Chapter 4; Section 4.4 (Relevant topics) Section 4.6	

Suggested Readings

- 1. Joseph A. Gallian, Contemporary Abstract Algebra, Forth edition, Narosa Publications.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Tenth edition, Wiley publication
- 3. B. S Grewal, Higher Engineering Mathematics, Forty second edition, Khanna publishers.
- 4. James Stewart, Daniel Clegg, Saleem Watson, Calculus Early transcendentals, Ninth edition, Cengage

Evaluati	on Type	Marks
End Sem	ester Evaluation	70
Continuo	ous Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Calculators shall not be permitted.

KU1DSCCMT114: MATHEMATICS FOR ECONOMICS - I

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
I	DSC	100	KU1DSCCMT114	4	60

Learning Approach (Hours/ Week)			Marks Distribution			
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
4			30	70	100	2

Course Description

This course is to introduce Sets, Functions, Limits, and Continuity and applications of these Concepts in Economics.

Course Prerequisite

Basic Mathematics

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand Sets, Subsets	Understand
2	UnderstandFunctions	Understand
3	Understand Graph of a function	Understand
4	Understand Limit of a function	Understand
5	Understand Continuity of a Function	Understand
6	Understand Discontinuous Functions	Understand
7	Application of these concepts in Economics	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓						
CO 2						✓	
CO 3	✓						
CO 4	✓		✓				

CO 5	✓				
CO 6	✓				
CO 7				✓	

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	Sets and	Functions	
	1	a) Sets and Subsets	
I	2	a) Constants and Variables	
		b) Functions and Graphs	14
	Limits		
	1	a) Limit of a Function	
II	2	a) Method of Finding Limits	14
	Some In	portant Limits	
TTT	1	a) Infinite Limits	
III		b) Some Results on Limits	14
	2	a) Some Important Limits	
IV	Continu	ous and Discontinuous Functions	
1 V	1	a) Properties of Continuous Functions	13
▼ 7	Teacher	Specific Module	_
V	Econom	ic Application of Continuous and Discontinuous Functions	5

Essential Readings:

- 1. Michael Hoy, John Livernois, Chris McKenna, Ray Rees, Thanasis Stengos, Mathematics for Economics Third Edition, PHI Learning Pvt. Ltd
- 2. B M Aggarwal, Business Mathematics & Staistics, Ane Books Pvt.Ltd
- 3. Edward T Dowling, Introduction To Mathematical Economics (3rd Edition), Schaum's out Lines

Reference Distribution:

Module	Unit	Reference No.	Sections	Remarks
т	1	1	Section 2.1	
1	2	2	Sections 3.1, 3.2, 3.3, 3.4	
	1	2	Section 3.6, 3.9	
II	2	2	Section 3.10	Excluding L'Hospital's Rule

	1	2	Section 3.11, 3.12, 3.13	
III	2	2	Sections 3.14	Problems related to L'Hospital's Rule omitted
IV	1	2	Section 3.15	
V	1	1	Section 4.2	

Suggested Readings:

- 1. Mehta -Madani, Mathematics for Economics, Sultan Chand and Sons, Educational Publishers New Delhi
- 2. AllenR.G.D (1956) Mathematical Analysis For Economists
- 3. Yamane, Taro (2004) Mathematics For Economists: An Elementary Survey
- 4. Chiang A.C (1988) Fundamental Methods of Mathematical Economics, McGraw Hill

Assessment Rubrics:

	Evaluation Type	Marks
	nester Evaluation	70
Continu	ous Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

SEMESTER - 2

KU2DSCCMT101: COMPUTATIONAL CALCULUS - II

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
2	DSC	100	KU2DSCCMT101	4	60

Learning Approach (Hours/ Week)			Ma	arks Distril	Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

Course Description

In this course the student will learn the definite integral of a function, techniques to evaluate trigonometric integrals, and applications of integration. Also to approximate the value of a definite integral using the different methods of numerical integration.

Course Prerequisite

Integrals of basic functions and rules of integration

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the fundamental theorem of calculus and apply it to find the derivatives and integrals of certain functions.	Understand, Apply
2	Apply the notion of definite integrals to find area between curves, volumes using cross-sections, arc length and areas of surfaces of revolution	Apply
3	Understand integration by successive reduction and apply reduction formulas to evaluate trigonometric integrals	Understand, Apply

4	Understand the concept of polar coordinates and apply it to find areas under thecurves and length of curves	Understand, Apply
5	Understand numerical integration and apply the different numerical integration methods to approximate the value of a definite integral.	Understand, Apply

Mapping of Course Outcomes to PSOs

						PSO 7
CO 1	1	/	1			√
CO 2					✓	
CO 3	1					
CO 4	✓					
CO 5	1					
CO 6	✓					
CO 7	✓					

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	Integra	als and it's applications	
	1	a) Definite integral,	
-		b) The Fundamental theorem of Calculus,	
I		c) Indefinite integrals and the Net change theorem	14
	2	Application of Integration	
		a) Area between curves	
		ation of Integration,Reduction formulas and ometricIntegrals	
II	1	Applications of Integration	
		a)Volumes,	

	b) Volumes by cylindrical shells	
	c) Work	14
	d) Average value of a function,	
	2 Reduction formulas and trigonometric Integrals	
	a) Reduction formulas and corresponding problems (From the exercise only)	
	b) Trigonometric integrals	
	Further applications of integration, Polar Co-ordinates	
	1 Applications of integration	
	a) Arc length	
III	b) Area of a surface of revolution	14
	2 Polar Coordinates	4 7
	a) Polar Coordinates	
	b) Areas and Lengths in Polar Coordinates	
	Numerical Integrations.	
	1 a) Numerical Integration,	
IV	b) Left End Points, Right End Points and Midpoint Sums	13
1 V	c) Trapezoidal Sums	
	d) Simpson's Rule	
	e) Gaussian Quadrature	
	Additional Topic offered by teacher	
	Directions	
V	Discuss the geometry of problems solved in Unit I to Unit III using various software like Geogebra, Desmos Calculator etc.	5
	Relevant Problems in Unit IV from the reference books to be discussed	

- 1. James Stewart, Daniel Clegg, Saleem Watson; Calculus Early Transcedentals -Metric version; 9^{th} Edition; Cengage Learning 2021.
- 2. William C. Bauldry; Introduction to computational Mathematics; First edition; CRC Press.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
T	1	1	Sections 5.2, 5.3, 5.4	
1	2	1	Section 6.1	
	1	1	Section 6.2, 6.3, 6.4, 6.5	
II	2	1	Sections 7.1, 7.2	Only reduction formulas from section 7.1 and it's exercises
III	1	1	Sections 8.1, 8.2	
111	2	1	Sections 10.3, 10.4	
IV	1	2	sections 1, 2, 3, 4, 5 from Chapter V	

Suggested Readings:

- 1. H. Anton, I. Bivens and S. Davis; Calculus; 10th edition; Willey
- 2. G.B Thomas Jr., M.D Weir and Joel R.Hass; Thomas' Calculus(12th edition); Pearson,2009
- 3. S.K Stein; Calculus and Analytic Geometry; McGraw Hill, 1992.
- 4. G.F Simmons; Calculus with analytic Geometry (second edition); McGraw Hill.1995.
- 5. S.S Sastry; Introductory methods of numerical analysis; Fifth edition; PHI
- 6. M.K Jain, S.R.K. Iyengar, R.K. Jain; Numerical Methods For Scientific And Engineering Computation (4th Edition); New Age International Publications.

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

KU2DSCCMT111: BASIC COMPUTATIONAL MATHEMATICS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
II	DSC	100	KU2DSCCMT111	4	60

Learning Approach (Hours/ Week) Marks Distributio					ion	Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
4		1	30	70	100	2	

Course Description

This course is to introduce basic concepts of sets and relations and how they are used in computer language.

Course Prerequisite

1. Basic Set Theory

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of Sets and Relation	Understand
2	Comparing growth rates and functions.	Understand, Apply
3	Understand the concept of Functions.	Understand
4	Understand the concept of Pigeon hole Principle.	Understand
5	Apply Recurrence relation for solving various problems.	Understand

Mapping of Course Outcomes to PSOs

		PSO 2			
CO 1	1	1	1	1	
CO 2				1	
CO 3	1				
CO 4	1				
CO 5	1				
CO 6	1				
CO 7	/				

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	Set Theor	ry	
T		a) Basic Definitions	14
•	1	b) Operations on Sets.	14
		c) Principle of Inclusion -Exclusion.	
II	Function	S	14

		a) Basic Definitions.	
	1	b) Operations on Functions	
		c) Pigeon hole Principle.	
	Compar	ing Growth Rates of Functions	
		a) A Measure for Comparing Growth Rates	
III	1	b) Properties of Asymptotic Domination.	14
	1	c) Polynomial Functions	
		d) Exponential and Logarithmic Functions	
	Recurre	nce Relations	
IV		a) The Tower of Hanoi Problem.	13
1 4	1	b) Solving First - Order Recurrence Relations.	13
		c) Fibonacci Recurrence Relation.	
	Teacher	Specific Module	
V	a) Introduction to Propositional Logic.b) Truth and Logical Truth.		5
	0) 1	rum and Dogretti Itum.	

1.Gary Haggard, John Schlipf, Sue Whitesides; Discrete Mathematics for Computer Science; Thomson Brooks/Cole.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections 1.1, 1.3, 1.5	
II	1	1	Section 4.1, 4.3, 4.6	
III	1	1	Sections 5.1.1, 5.1.2, 5.1.3, 5.1.4	
IV	1	1	Sections 9.1, 9.2, 9.4	
V	1	1	Relevant Topics	

Suggested Readings:

- 1. Seymour Lipschutz, Marc Lars Lipson; Schaum's Outline of Theory and Problems of Discrete Mathematics, Third edition; McGRAW-HILL
- 2. Seymour Lipschutz; Schaum's Outlines Set Theory and Related Topics, Second Edition; McGRAW-Hill.
- 3. Ralph P Grimaldi; Discrete and Combinatorial Mathematics An Applied Introduction, Fifth Edition; Addison-Wesley.
- 4. V K Balakrishnan; Introductory Discrete Mathematics; Dover Publications, INC

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU2DSCCMT112: MATHEMATICAL STATISTICS - II

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
II	DSC	100	KU2DSCCMT112	4	60

Learning	Learning Approach (Hours/ Week)			ks Distribut	ion	Duration of
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	ESE (Hours)

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

4	1	30	70	100	2

Course Description

This course is to introduce and understand MGF, Cumulants, Chebychev's Inequality and Different types of Discrete and Continuous distributions,

Course Prerequisite

Integral and differential Calculus

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand M.G.F	Understand
2	Understand Discrete Distribution	Understand
3	Understand Continuous distributions	Understand
4	Apply discrete distribution to solve real life problems	Apply
5	Apply Continuous distribution to solve real life problems	Apply
6	Understand and apply Central limit Theorem	Understand, Apply

Mapping of Course Outcomes to PSOs

1		1				
1		1				
✓		✓				
1		1		1		✓
1		1		1		✓
1		1		1		✓
	PSO 1	PSO 1 PSO 2	PSO 1 PSO 2 PSO 3	PSO 1 PSO 2 PSO 3 PSO 4	PSO 1 PSO 2 PSO 3 PSO 4 PSO 5	

COURSE CONTENTS

MODULE	UNIT	UNIT DESCRIPTION					
I	MGF, Cumulants and Chebychev's Inequality						
	1	a)Moment generating functions 14					

		b) Cumulants	
	2	a)Chebychev's Inequality	
	Disci	rete distributions part I	
II	1	a) Bernoulli's distribution	
	2	a)Binomial distribution	14
	Discı	rete distributions part II	
III	1	a)Poisson distribution	
	2	a)Geometric distribution	14
	Cont	inuous Distributions and Central Limit Theorem.	
	1	a)Rectangular Distribution	
IV		b)Normal Distribution	13
	2	a) Central Limit Theorem	
	Teac	her Specific Module	
\mathbf{V}	Directions		
	R pro	ogramming	

- 1. S C Gupta, V K Kapoor; Fundamentals of Mathematical Statistics (10th revised edition); S Chand and Sons; 2002
- 2. Peter Dalgard; Introductory Statistics with R; Springer (2008)

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections 6.10, 6.11	Sections 6.10.1 ,6.11.2 are omitted
	2	1	Section 6.13	
	1	1	Section 7.1.	
II	2	1	Sections 7.2, 7.2.1, 7.2.2, 7.2.6, 7.2.7, 7.2.9	
Ш	1	1	Section 7.3	Sections 7.3.1, 7.3.3, 7.3.6, 7.3.9, 7.3.10 are omitted
	2	1	Sections 7.5	7.5.1, 7.5.2 are omitted

IV	1	1	Section 8.1, 8.2	Section 8.1, 8.2, 8.2.1(derivation omitted) 8.2.14(fitting omitted) Sections8.2.9,8.2.10, 8.2.12, 8.2.15 are omitted
	2	1	Sections 8.10	Proof of C.L.T omitted; 8.10.1, 8.10.2, 8.10.3 and 8.10.4 are omitted
V	1	2	Relevant sections	

Suggested Readings:

- 1. Dennis Wackerly, William Mendenhall III and Richard S; Mathematical Statistics with Application (Seventh Edition); Duxbury Press; 2007
- 2. Robert. V. Hogg, Allen T. Craig; Introduction to mathematical Statistics (Fifth Edition); Higher education press; 1978
- 3. G Shankar Rao; Probability and statistics for Science and Engineering; University press; 2011
- 4. Maria Dolores Ugarte, Ana F.Militino, Alan T Amholt; Probability and Statistics with R; CRC Press, A Chapman & Hall Book
- 5. Frank S Emmert-Streib, SalissouMoutari, Matthias Dehmer; Mathematical Foundations of Data Science Using R; De Gruyter (2022)
- 6. Meatloaf, Norman S; Probability and Statistics for data Science-math+R+data; CRC press (2020)

Assessment Rubrics:

E	valuation Type	Marks		
End Sem	ester Evaluation	70		
	us Evaluation	30		
	Test Paper *	12		
b)	Assignment	12		
c)	Seminar, Viva-Voce	6		
	Total	100		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

KU2DSCCMT113: MATHEMATICS FOR DATA SCIENCE - II

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
II	DSC	100	KU2DSCCMT113	4	60

Learning	Mar	Duration of					
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)	
4			30	70	100	2	

Course Description

This course is designed to introduce vector space, random variables ,partial derivatives and to find extreme values of functions of two or more variables. It also include iteration methods to solve system of linear equations.

Course Prerequisite

KU1DSCCMT111: Mathematics for Data Science 1

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of solving system of linear equations using iteration method.	Understand
2	Understand the basic concepts of linear algebra.	Understand
3	To extend the concept of limit continuity and differentiability to more than one variables.	Understand
4	Apply Lagrange's multipliers to find extreme values	Apply
5	Understand discrete and continuous random variables and its probability distribution	Understand

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	√		✓			✓	✓
CO 2	✓		√				
CO 3	✓		√				✓
CO4	✓				✓		
CO 5	✓	✓				✓	

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS	
I		Numerical Analysis	14	
	1.1	LU decomposition		
	1.2	Gauss Jacobi iteration method		
	1.3	Gauss – Seidel iteration method		
II		14		
	2.1	Vector spaces		
	2.2	Subspaces		
	2.3	Linear combinations and system of linear equations		
	2.4	Linear dependence and Linear independence		
	2.5	Basis and Dimension		
III	Partial Derivatives			
	3.1	Functions of severable variable		
	3.2	Partial derivatives		
	3.3	Chain Rule		
	3.4	Extreme values and saddle points		

	3.5	Lagrange's multipliers	
IV		Random Variables & Distribution Functions	
	4.1	Random variable – continuous and discrete random variable	
	4.2	Discrete probability distribution, mean and variance of random variables	
	4.3	Theoretical distribution	
	4.4	Binomial probability distribution	
	4.5	Poisson distribution	
	4.6	Normal distribution	
V		Teacher Specific Module	5
		Visualization of Distribution Functions.	

- 1. S.K.R. Iyengar, R. K. Jain Mathematical Methods, Second Edition, Narosa Publications.
- 2. Stephen H. Friedberg, Arnold J. Insen, Lawrence E. Spence, Linear Algebra, Forth edition, Pearson Education.
 - 3. George B. Thomas, Jr, Mauric D. Weir, Joel Hass, Thomas' Calculus Early transcendentals Twelfth edition
 - 4. N.P. Bali, Dr. Manish Goyal , A textbook of Engineering Mathematics Ninth Edition Lakshmi Publications.

Module	Unit	Reference No.	Chapters	Remarks
	1.1	1	Chapter 1; Section 1.6.2	
I	1.2	1	Chapter 1; Section 1.7.1	
	1.3	1	Chapter 1; Section 1.7.2	
	2.1	2	Chapter 1; Section 1.2	All proofs are omitted
II	2.2.	2	Chapter 1; Section 1.3	
	2.3	2	Chapter 1; Section 1.4	
	2.4	2	Chapter 1; Section 1.5	
	2.5	2	Chapter 1; Section 1.6	
	3.1 3 Chapter 14; Section 14.1		Chapter 14; Section 14.1	
III	3.2	3	Chapter 14; Section 14.3	All proofs are omitted
	3.3	3	Chapter 14; Section 14.4	
	3.4	3	Chapter 14; Section 14.7	
	3.5	3	Chapter 14; Section 14.8	
***	4.1	4	Chapter 21; Section 21.51	
IV	4.2	4	Chapter 21; Section 21.52,21.53	
	4.3	4	Chapter 21; Section 21.54	
	4.4	4	Chapter 21; Section 21.55 to 21.57	
	4.5	4	Chapter 21; Section 21.58 to 21.60	
	4.6	4	Chapter 21; Section 21.61 to 21.63	
V				

Suggested Readings

- 1 Erwin Kreyszig, Advanced Engineering Mathematics, Tenth edition, Wiley publication
- 2. Kenneth Hoffman & Ray Kunze: *linear Algebra* (Second Edition), Prentice-Hall of India *Pvt.* Ltd, 2015
- 3. Martin Anthony and Michele Harvey, Linear Algebra: Concepts and Methods, Cambridge University Press, 2012
- 4. S.C Gupta , V.K Kapoor , Fundamentals of Mathematical Statistics, Sultan Chand & Sons.
- 5. B. S Grewal, Higher Engineering Mathematics, Forty second edition, Khanna publishers.

Evaluation	on Type	Marks
End Semo	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Calculators shall not be permitted.

KU2DSCCMT114: MATHEMATICS FOR ECONOMICS - II

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
II	DSC	100	KU2DSCCMT114	4	60

Learning	Approach (Hou	Mar					
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)	
4			30	70	100	2	

Course Description

This course is to introduce Differentiation, Rules for Differentiation and its application in Economics

Course Prerequisite

Sets, Functions

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand Differentiation	Understand
2	Understand Rules of Differentiation	Understand
3	Understand the concept of Maxima and Minima	Understand
4	Understand the concept of Concavity and Convexity	Understand
5	Understand Points of Inflection	Understand
6	Understand Critical Point	Understand
7	Application of these concepts in Economics	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓						

CO 2					✓	
CO 3	✓		✓			
CO 4	✓	✓				
CO 5	✓		✓			
CO 6	✓					
CO 7		✓			✓	

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS		
	Diffe	rentiation and Rules of Differentiation			
	1	Derivatives			
		a) Theorem 4.2			
	2	Rules of Differentiation			
		a) Derivative x ⁿ	14		
Ι		b) Derivative of sum of Functions			
		c) Derivative of Product of two Functions			
		d) Derivative of Quotient of two Functions			
		e) Chain Rule			
		f) Parametric Functions			
	Geometrical meaning of Derivatives and Successive Differentiation				
	1	Standard Results			
II		a) Formulas and Examples	14		
	2	Logarithmic Differentiation	14		
	3	Successive Differentiation			
	Appli	ications of Differentiation			
	1	Maxima and Minima			
III		a) Definition of Extrema			
		b) Determination of Extrema	14		
	2	Concavity, Convexity and Points of Inflection			
	3	L' Hospital' s Rule			
IV	<u> </u>	lus of Multivariable Functions			
T 4	1	Functions of several variables			

	2	Rules of Partial Differentiation	13
		a) Product Rule	
		b) Quotient Rule	
		c) Generalized Power Function Rule	
	Teach	er Specific Module	
V	Econo Variab	omic Application of Derivative and Differential of functions of one ble	5

- Michael Hoy, John Livernois, Chris McKenna, Ray Rees, Thanasis Stengos, Mathematics for Economics Third Edition, PHI Learning Pvt Ltd
- 2. B M Aggarwal, Business Mathematics & Staistics, Ane Books Pvt.Ltd
- 3. Edward T Dowling, Introduction To Mathematical Economics (3rd Edition), Schaum's ouT Lines

Reference Distribution:

Module	Unit	Reference No.	Sections	Remarks
т	1	2	Section 4.1, 4.2	Proof of Theorems Omitted
1	2	2	Sections 4.3, 4.4	Proof of Theorems Omitted
II	1	2	Section 4.5, 4.6	Proof of Theorems Omitted
11	2	2	Section 4.7, 4.8	Second order Derivative only
	1	2	Section 5.1, 5.2	
III	2	2	Sections 5.3	
	3	3	Section 15.7	
	1	3	Section 5.1	
IV	2	3	Section 5.2	
Þ	3	3	Section 5.3	
V	1	1	Section 5.1, 5.2, 5.3	Examples only

Suggested Readings:

- 1. Mehta -Madani, Mathematics for Economics, Sultan Chand and Sons, Educational Publishers New Delhi
- 2. Allen.R.G.D (1956) Mathematical Analysis For Economists
- 3. Yamane, Taro (2004) Mathematics For Economists : An Elementary Survey
- 4.. Chiang. A, C (1988) Fundamental Methods of Mathematical Economics, McGraw Hill

Assessment Rubrics:

	Evaluation Type	Marks
	mester Evaluation	70
Continu	ous Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

** Use of Scientific Calculators below 100 functions (that is, upto fx 99) shall be permitted.

SEMESTER - 3

KU3DSCCMT201: INTRODUCTION TO GEOMETRY AND

ANALYSIS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	200	KU3DSCCMT201	4	60

Learning	Mar	Duration of				
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

Course Description

This course is to introduce the notion of sequences and series, convergence tests of sequences and series in analysis and different coordinate systems such as polar coordinate

system, cylindrical coordinate system, spherical coordinate system and sketching of cylinders and quadratic surfaces in analytic geometry.

Course Prerequisite

Elementary calculus including Functions, limits, integrals and geometric concepts including Cartesian coordinate system, lines, planes, conics.

Course Outcomes

CO No	Expected Outcome	Learning Domains
1	Understand sequences, series and their convergence and divergence.	Understand
2	Apply convergence tests to sequences and series to test convergence	Apply
3	Understand the polar coordinate system and the relation between polar and cartesian coordinate system	Understand
4	Understand Cylindrical coordinate system and spherical coordinate system.	Understand
5	Understand the cylinders and quadratic surfaces	Understand
6	Identify the cylindrical surfaces and quadratic surfaces.	Understand
7	Sketch the graph of cylinders and quadratic surfaces	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓						
CO 2						1	
CO 3	✓						
CO 4	1						
CO 5	1						
CO 6	1						
CO 7						1	

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS		
	Sequenc	ces and series			
		Sequences			
		a) Infinite sequences			
	1	b) The limit of a sequences			
		c) Properties of convergent sequences			
		d) Monotonic and bounded sequences			
I		Series	14		
		a) Infinite series			
		b) Geometric series			
	2	c) Test for divergence			
		d) Properties of convergent series			
		e) Integrals Test and estimates of sum			
		f) The direct comparison test and Limit comparison test			
	Alterna for serie	ting series, Absolute Convergence and Convergence tests			
	ior serie				
		Alternating series and Absolute convergence			
		a) Alternating series			
	1	b) Estimating sum of Alternating series			
II	-	c) Absolute convergence and conditional convergence	14		
		d) Rearrangements			
	2	a) Ratio and Root tests			
	3	a) Strategy for testing series			
	Coordin	nate systems			
		Polar coordinates			
III	1	a) Polar coordinate system			
		b) Relationship between Polar and Cartesian coordinates	14		
	2	Cylindrical coordinates and Spherical coordinates			

		a) Cylindrical coordinates	
		b) Spherical coordinates	
	Cylinde	ers and Quadratic surfaces	
IV	1	a) Cylinders	
1 V	2	a) Quadratic surfaces	13
		b) Application of quadratic surfaces	
	Teache	r Specific Module	
V	Polar curves, Symmetry of polar curves, Conics sections in polar curves, Polar equations of conics.		

- 1. G.B. Thomas Jr., M.D. Weir and J.R. Hass; Thomas' Calculus: Early Transcendentals (12th edition); Pearson Education
- 2. H. Anton, I. Bivens and S. Davis; Calculus (Tenth Edition); John Wiley & Sons Inc; 2012.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Section 11.1	Proof Omitted
1	2	1	Sections 11.2, 11.3, 11.4	Proof Omitted
	1	1	Section 11.5	Proof Omitted
II	2	1	Section 11.6	Proof Omitted
	3	1	Section 11.7	Proof Omitted
III	1	1	Section 10.3	Polar Curves excluded
111	2	1	Sections 15.7, 15.8	Relevant topics only
IV	1	1	Section 12.6	
V		2	Relevant topics	TSM

Suggested Readings:

- 1. S.K. Stein; Calculus and Analytic Geometry; McGraw Hill; 1992.
- 2. G.F. Simmons; Calculus with Analytic Geometry (Second Edition); McGraw Hill; 1995.
- 3. Richard A Silverman; Modern Calculus and Analytic Geometry; Dover Publications Inc.

4. Earl Swokowski; Calculus with Analytic Geometry; Second edition; Brooks/ Cole.

Assessment Rubrics:

	Evaluation Type	Marks
En	d Semester Evaluation	70
Coı	ntinuous Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU3DSCCMT202: ORDINARY DIFFERENTIAL EQUATIONS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	200	KU3DSCCMT202	4	60

Learning	Mar	Duration of				
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

Course Description

This course is to introduce the concepts of ordinary differential equations, modelling, different methods to solve first order ODE and second order ODE.

Course Prerequisite

Differentiation, Integration

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the basic concepts of ordinary differential equations	Understand
2	Understand Modelling	Apply
3	Understand various methods to solve first order ODE	Understand
4	Understand various methods to solve second order ODE	Understand
5	Comprehend the concepts of existence and uniqueness of solution of an initial value problem	Understand

Mapping of Course Outcomes to PSOs

		PSO 2				
CO 1	✓		✓			
CO 2	✓		✓		✓	
CO 3	√		✓			

CO 4	✓	✓		
CO 5	√	✓		
CO 6	√	✓		
CO 7	✓	✓		

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	First (order Ordinary Differential Equations	
	1	Basic concepts of first order ODE	
		a)Basic concepts	
T		b) Modelling	14
Ι	2	Methods of solving first order ODE	
		a) Separable ODEs; modelling	
		b) Exact ODEs	
		c) Integrating factors	
		d) Linear ODEs	
	First	order Ordinary Differential Equations	
II	1	a) Bernoulli equation	
		b) Population dynamics	14
		c) Orthogonal trajectories	
	2	Existence and uniqueness of solutions	
	Secon	d order Ordinary Differential Equations	
III	1 a) Homogeneous linear ODEs of second order		14
444		b) Homogeneous linear ODEs with constant coefficients	**
	2	a) Differential operators	

	b) Euler-Cauchy equations	
	Second order Ordinary Differential Equations	
	1 a) Existence and uniqueness of solutions (Proof omitted)	
IV	b) Wronskian	13
	c) Nonhomogeneous ODEs	
	d) Solution by Variation of Parameters	
	Teacher Specific Module	
\mathbf{v}	Directions	5
	Discuss and visualize the solutions of ODE using various softwares like Geogebra, Scilab, Python etc.	

1. Erwin Kreyzig; Advanced Engineering Mathematics (Tenth Edition); John Wiley & Sons.

Reference Distribution:

Unit	Essential Reading No.	Sections	Remarks
1	1	Section 1.1	
2	1	Section 1.3 to 1.5	
1	1	Section 1.5 to 1.6	
2	1	Sections 1.7	Proof omitted
1	1	Sections 2.1, 2.2	
2	1	Sections 2.3, 25	
1	1	Sections 2.6	Proof omitted
2	1	Sections 2.7, 2.10	
	1 2 1 2 1 2 1	1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1	1 1 Section 1.1 2 1 Section 1.3 to 1.5 1 1 Section 1.5 to 1.6 2 1 Sections 1.7 1 1 Sections 2.1, 2.2 2 1 Sections 2.3, 25 1 1 Sections 2.6

Suggested Readings:

- 1. S.L.Ross; Differential Equations (Third Edition); Wiley & Sons; 1984.
- 2. A.H.Siddiqi&P.Manchanda; A First Course in Differential Equations with Applications; Macmillan, 2006.
- 3. E.A. Coddington; An Introduction to Ordinary Differential Equation; PHI; 2009.

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
	Assignment	12
c)	Seminar, Viva-Voce	6
<u> </u>	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU3DSCCMT211: MATHEMATICAL STATISTICS - III

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	200	KU3DSCCMT211	4	60

Learning Approach (Hours/ Week)			Mark	Duration of			
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
4		1	30	70	100	2	

Course Description

This course is to introduce Sampling, Null Hypothesis, Level of Significance, critical region, Standard Error and Chisquare distribution and also testing Hypothesis using Normal and Chisquare distribution

Course Prerequisite

Integration

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand Sampling and Types of Sampling	Understand

2	Understand Null Hypothesis	Understand
3	Understand Error in statistic	Understand
4	Understand Critical region	Understand
5	Understand level of significance	Understand
6	Testing of Hypothesis	Understand, Apply

Mapping of Course Outcomes to PSOs

Mapping of Course Outcomes to 1808								
	1	PSO 2		i	1		1	
CO 1	/		✓			1		
CO 2	/		✓			1		
	1	1	1			1		
CO 4	1		✓					
CO 5	1		✓			1		
CO 6	1		✓		✓	1		
00,	1		✓			1		

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	samp	ling and Testing of Hypothesis for large samples	
I	1	a) Sampling and Types of Sampling	14
	2	a) Testing of Hypothesis for large samples	4
	Test f	For single proportion and Unbiased Estimate	
	1	a) Test for single proportion	
II 2 a)Unbiased Estimate for population mean	a)Unbiased Estimate for population mean	14	
		b) Unbiased Estimate for Population Variance	
	•	Standard error of Sample mean Test of significance for mean and difference of Standard deviation	
III	1	a)Standard error of Sample mean	le proportion and Unbiased Estimate t for single proportion iased Estimate for population mean biased Estimate for Population Variance ard error of Sample mean Test of significance for mean ifference of Standard deviation idard error of Sample mean
	1	b)Test of significance for mean	
		c) Test of significance for difference of means	

	2	a) Test of significance for difference of Standard deviations	
	Chi	square distribution and Applications Chisquare distribution	
IV	1	a) Chisquare distribution	13
_ ,		b) Applications of Chisquare distribution	
	2	a) Yates correction	
	Tea	cher Specific Module	
\mathbf{V}	Dire	ections	5
	R pr	ogramming	

- 1. S C Gupta & V K Kapoor; Fundamentals of Mathematical Statistics (10 th revised edition);
- 2. Peter Dalgard -Introductory Statistics with R-Springer (2008)

Module	Unit	Essential Reading No.	Sections	Remarks
т	1	1	Sections 12.1, 12.2	
1	2	1	Sections 12.3 to 12.8	
ΤΤ	1	1	Section 12.9	Section 12.9.1 omitted
II	2	1	Sections 12.10, 12.11	
Ш	1	1	Sections 12.12 to 12.14	
111	2	1	Sections 12.15	
	1	1	Sections 12 1 12 2 12 2 12 7	Sections 13.3.3 and
IV	1	1	Sections 13.1,13.2, 13.3, 13.7	13.3.4 are omitted
	2	1	Section 13.8	
V	1	2	Relevant topics	

Suggested Readings:

- 1. Dennis Wackerly, William Mendenhall III and Richard S; Mathematical Statistics with Application (Seventh Edition), Duxbury Press, 2007
- 2. Robert. V. Hogg and Allen T. Craig; Introduction to Mathematical Statistics (Fifth Edition); Higher education press, 1978
- 3. G Shankar Rao; probability and statistics for Science and Engineering; University press, 2011
- 4. Maria Dolores Ugarte, Ana F.Militino, Alan T. Amholt; Probability and Statistics with R; CRC Press, A Chapman & Hall Book
- 5. (De Gruyter STEM) Frank S Emmert-Streib, SalissouMoutari, Matthias Dehmer; Mathematical Foundations of Data Science Using R; De Gruyter (2022)
- 6. Matloff, Norman S; Probability and Statistics for data Science, Math+R+Data; CRC press(2020)

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
•	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (that is, upto fx 99) shall be permitted.

KU3DSCCMT212: GRAPH THEORY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	200	KU3DSCCMT212	4	60

Learning	Approach (Hou	rs/ Week)	Mar	Marks Distribution		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
4		1	30	70	100	2

Course Description

This course is to introduce the notion of Graph Theory, the basic concepts and definitions examples and its applications to daily life.

Course Prerequisite

Higher Secondary Mathematics

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Comprehend the basic concepts and definitions of Graph theory.	Understand
2	Apply Graph theory in daily life by Mathematical Modelling.	Apply
3	Understand sub graphs, paths and cycles in a graph	Understand
4	Comprehend the notion of Matrix representation of graphs	Understand
5	Understand Trees, Connectivity, Bridges, Spanning Trees	Understand
6	Apply the notion of Cut vertices and connectivity,	Apply
7	Understand Eulerian graphs and Hamiltonian graphs,	Understand
8	Apply the notion of the Chinese Postman Problem and The Travelling Salesman Problem	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	√		✓				
CO 2	√		✓			✓	
CO 3	√		✓				
CO 4	√		✓				
CO 5	√		✓				
CO 6	√		✓				
CO 7	√		✓				

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	An In	troduction to Graphs	
	1	Introduction	
		a)The definition of a graph	
		b) Graphs as models	
		c) More definitions	
I		d) vertex degrees	14
		e) Sub graphs	
	2	Paths and cycles ,Matrix representation of graphs, fusion	
		a)Paths and cycles2	
		b) Matrix representation of graphs	
		c) Fusion	
II		and Connectivity: Definitions and simple properties, es, Spanning Trees	14

1 Trees and Connectivity			
c) Definitions and simp	ple properties		
d) Bridges			
c) Spanning Trees			
-			
1 e) Cut vertices and connectivity			
f) Euler tours (Fleury's	s algorithm omitted)	14	
g) The Chinese Postman Problem		-	
h) The Hamiltonian Gr	aphs		
Directions			
1.Fusion algorithm for connectedness			
2 Connector Problems: Algorithms for finding minimal spanning trees in a graph			
a) Kruskal's Algorithm,			
b) Primes Algorithm			
Teacher Specific Module			
Shortest Path Problem			
a)The Breadth First Search algorithm			
b) The Back- TrackingT algorithm			
c)The Dijkstra's algorithm			
	c) Definitions and simply d) Bridges c) Spanning Trees Cut vertices and connectivity, omitted), the Chinese Postman 1 e) Cut vertices and configure for the Chinese Postman h) The Chinese Postman h) The Hamiltonian Graph Directions 1.Fusion algorithm for connected 2 Connector Problems: Algorithm in a graph a) Kruskal's Algorithm, b) Primes Algorithm Teacher Specific Module Shortest Path Problem a) The Breadth First Search and b) The Back-TrackingT algorithm	c) Definitions and simple properties d) Bridges c) Spanning Trees Cut vertices and connectivity, Euler tours (Fleury's algorithm omitted), the Chinese Postman Problem 1	

1. John Clark and Derek Allan Holton. "A First Look at Graph Theory" (1995), Allied Publishers Ltd. In association with World Scientific. Publishing Co. Pte Ltd..

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
Ι	1	1	Sections 1.1to 1.5	

1		1	Section 1.6	
II	2	1	Sections 1.7	
	3 1 See		Sections 1.8	Fusion Algorithm for connectedness omitted
	1	1	Sections 2.1	
III	1	1	Sections 2.2	
	2	1	Sections 2.3	Connector problems omitted
	1	1	Sections 2.6	
IV	2	1	Sections 3.1	(Fleury's algorithm omitted)
- '	3	1	Sections 3.2	
	4	1	Sections 3.3	Proof of theorem 3.6 excluded

Suggested Readings:

- 4. K.R. Parthasarathy Basic Graph Theory; Tata-McGraw Hill; 1994
- 5. R. Balakrishnan and K. Ranganathan; A Text Book of Graph Theory (2nd edition); Springer.
- 6. J.A. Bondy and U.S.R. Murthy; Graph Theory with Applications; Macmillan.
- 7. F. Harary; Graph Theory; Narosa.
- 8. NarsinghDEO; Graph Theory with Applications to Engineering and computer Science; PHI Pvt. Ltd.
- 9. G. Chartrand and P. Zhang; Introduction to Graph Theory; TataMcGraw Hill.
- 10. J. A. Dossey et al.; Discrete Mathematics; Pearson Education; 2005.

Assessment Rubrics:

E	valuation Type	Marks		
	ester Evaluation	70		
Continuo	us Evaluation	30		
a)	Test Paper *	12		
b)	Assignment	12		
c)	Seminar, Viva-Voce	6		
	Total	100		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU3DSCCMT213: PROGRAMMING IN PYTHON

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
3	DSC	200	KU3DSCCMT213	3+1	75

Learning Approach (Hours/ Week)		Marks Distribution			Duration	
Lecture	Practical	Tutorial	CE	ESE	Total	of ESE (Hours)
3	1+1	1	35	65	100	1.5

Course Description

This course is designed to understand the concept of Python programming and solving mathematical problems related with symbolic computations

Course Prerequisite

Operating a Computer, A Basic Course in Calculus and Higher Secondary Linear Algebra

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the fundamentals to advanced Python programming concepts	Understand
2	Develop proficiency in sympolic computation with SymPy	Understand
3	Develop skills to solve numerical problems in Mathematics using Python	Understand

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	√	✓					
CO 2	√	√	√				
CO 3	√	√	✓				

COURSE CONTENTS

M O D U L E	UNIT	DESCRIPTION	HOUR S
Ι		Introductory Python	11
	1.1	Getting started with Python, Variables and Data Types, Keywords, Operators and their Precedence, Python String, Python Lists, Mutable and Immutable Types	
	1.2	Input from the Keyboard, Iteration: while and for loops, Conditional Execution: if, elif and else, Modify loops: break and continue, Line Joining, Exercises	
II		Advanced Programing in Python	11
	2.1	Functions, More on Strings and Lists, Python Modules and Packages, File Input/Output, Formatted Printing, Exception Handling	
	2.2	The Numpy Module, Vectorized Functions	
III		Data Visualization	11
	3.1	The Matplotlib Module, Plotting Mathematical Functions, Famous Curves, Power Series, Fourier Series	
	3.2	2D plot using colours, Fractals, Meshgrids, 3D Plots, Mayavi, 3D Visualization, Exercises	
IV		Numerical Methods	12
	4.1	Derivative of a function, Numerical Integration, Ordinary Differential Equations	

	4.2	Polynomials, Finding roots of an equation, System of linear equations, Interpolations, Exercises	
V		Teacher Specific Module	30
•	5.1	Evaluate a Taylor series numerically	
	5.2	Interpolate a function using	
		a) Newton's forward interpolation	
		b) Newton's backward interpolation	
		c) Lagrange's interpolation	
		d) Newton's general interpolation	
	5.3	Find integrals of functions using	
		a) Trapezoidal rule	
		b) Simpson's 1/3-rule	
	5.4	Find derivative of function numerically	
	5.5	Solve first order differential equations numerically	
		a) Euler method	
		b) Fourth order Runge-Kutta method	
	5.6	Solve algebraic equations numerically	
		The Bisection method	
		Regula Falsi method	
	5.7	Various vector operations such as dot product, cross product and	
		ent using numpy module	
	5.8	Various matrix operations such as determinant, inverse and	
		se using numpy module	
	5.9	Solve system of linear equations using numpy module	

Essential Readings
1. Ajith Kumar B. P, Python for Education, Inter University Accelerator Centre- New Delhi,

Reference Distribution

Module	Unit	Reference No.	Chapters	Remarks
	1.1	1	Chapter 2; Sections 2.1-2.6	
I	1.2	1	Chapter 2; Sections 2.7-2.12	
	2.1	1	Chapter 2; Sections 2.13-2.18	
II	2.2	1	Chapter 3; Sections 3.1-3.2	
	3.1	1	Chapter 4; Sections 4.1-4.5	
III	3.2	1	Chapter 4; Sections 4.6-4.11	
IV	4.1	1	Chapter 6; Sections 6.1-6.3	
	4.2	1	Chapter 6; Sections 6.4-6.6,	
			6.8,6.9	
V		1	Relevant Chapters from the Book	

Suggested Readings

- 1. Eric Matthes, Python Crash Course : A hands-on project based introduction to programming-3rd edition, no starch press, 2023
- 2. Wes Mckinney, Python for Data Analysis, O'Reilly Media Inc, 2022
- 3. Robert Johansson, Numerical Python: A Practical Technique Approach for Industry, Apress, 2015
- 4. Amit Saha, Doing Math with Python, No Starch Press, 2015
- 5. Vernon L Ceder, The Quick Python Book, Second Edition, Manning
- 6. Python tutorial online, https://www.geeksforgeeks.org/python-programming-language/

	Evaluation Type	Marks
End Se (ESE)	mester Evaluation	65 (50T+15P)
	ous Evaluation(CCA)	35 (25T + 10P)
Theory		
a)	Test Paper *	10
b)	Assignment	10
c)	Viva-Voce, Seminar	5
Practica	al	
a)	Skill	4
b)	Record	4
c)	Punctuality	2
Total		100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Calculators shall not be permitted.

KU3DSCCMT214: MATHEMATICS FOR DATA SCIENCE - III

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	200	KU3DSCCMT214	4	60

Learning	Marks Distribution			Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4			30	70	100	2

Course Description

This course is designed to introduce basic concepts in graph theory,linear transformation and to understand the mathematical modelling of linear programming problems and its graphical solution. It also aims to identify the correlation between two variables.

Course Prerequisite

KU2DSCCMT113-Mathematics for Data Science -II

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the formulation of linear programming problems mathematically	Understand
2	Apply graphical method to solve linear programming problems	Apply
3	Understand linear transformation and its matrix representation	Understand
4	Apply matrix operations to find eigen values and eigen vectors.	Apply
5	To understand the basic concepts of graph theory	Understand

6	Identify the relationship between two variables	Apply

Mapping of Course Outcomes to PSOs

	PSO	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
	1	2	3	4	3	√ 	/
CO	√			V		V	
1	_						
CO	✓	\checkmark					\checkmark
2							
CO	✓		\			✓	
3			•				
CO	✓				✓		
4							
СО	✓		√			✓	
5							
CO	✓	✓			✓		✓
6							

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS	
I		Linear Programming Problems	14	
	1.1	Structure of Linear programming model		
	1.2	General mathematical model of Linear programming problems		
	1.3	Guidelines on Linear programming model formulation		
	1.4	Linear Programming: Graphical method		
II	Linear Algebra			
	2.1	Linear Transformations, Null Spaces, and Ranges	14	
	2.2	The Matrix Representation of a Linear Transformation		
	2.3	The change of coordinate matrix		
	2.4	Eigenvalues and Eigenvectors		
	2.5	Inner Products and Norms		
III	Graph Theory		14	
	3.1	Definitions and Examples		
	3.2	Subgraphs, Complements and graph isomorphisms		

	3.3	Vertex degree: Eulers- trails and circuits.	
IV		Correlation & Regression	13
	4.1	Correlation	
	4.2	Scatter or dot diagrams	
	4.3	Karl Pearson's co-efficient of correlation	
	4.4	Computation of Correlation co-efficient.	
	4.5	Regression, Linear regression, Lines of regression.	
	4.6	Properties of regression co-efficient.	
V		Teacher Specific Module	5
		Dijkstra's – Shortest path algorithm	

Essential Readings

- 5. J K Sharma, Operations Research Theory and Applications, Sixth edition, (Trinity press)
- 6. Stephen H. Friedberg, Arnold J. Insen, Lawrence E. Spence, Linear Algebra, Forth edition, Pearson Education.
- 7. Ralph- P. Grimaldi, Discrete and Combinatorial Mathematics an Applied introduction, Third edition, Addison- Wesley publishing Company.
- 8. N.P. Bali, Dr. Manish Goyal, A textbook of Engineering Mathematics Ninth Edithion Lakshmi Publications.

Module	Unit	Reference No.	Chapters	Remarks		
	1.1	1	Chapter 2; Section 2.2			
I	1.2	1	Chapter 2; Section 2.6			
-	1.3	1	Chapter 2; Section 2.7			
	1.4	1	Chapter 3; All Sections except 3.3.5			
	2.1	2	Chapter 2; Section 2.1	All proofs are omitted		
П	2.2	2	Chapter 2; Section 2.2			
	2.3	2	Chapter 2; Section 2.5			
	2.4	2	Chapter 5; Section 5.1			
	2.5	Chapter 6; Section 6.1				
	3.1	3	Chapter 11; Section 11.1			
Ш	3.2	3	Chapter 11; Section 11.2	All proofs are omitted		
	3.3	3	Chapter 11; Section 11.3			
	4.1	4	Chapter 21; Section 21.24			
IV	4.2	4	Chapter 21; Section 21.25			
	4.3		Chapter 21; Section 21.26			
	4.4	4	Chapter 21; Section 21.27			
	4.5	4	Chapter 21; Section 21.31 to 21.33			
	4.6	4	Chapter 21; Section 21.34			
V		1	13.1-13.2			

Suggested Readings

- 1 H.A. Thaha, Operations Research, An Introduction (10 th edition), Pearson
- 2 G. Hadley, Linear Programming, Oxford & Dy Bharder, IBH Publishing Company.
- 3 Kenneth Hoffman & Ray Kunze: *linear Algebra* (Second Edition), Prentice- Hall of India *Pvt.* Ltd, 2015
- 4 Martin Anthony and Michele Harvey, *Linear Algebra: Concepts and Methods, Cambridge* University Press, 2012

]	Evaluation Type	Marks
End Sei	mester Evaluation	70
Continu	ous Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
То	tal	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Calculators shall not be permitted.

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	200	KU3DSCCMT215	4	60

Learning	Approach (Hou	Marks Distribution			Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)	
4		1	30	70	100	2	

Course Description

This course is to understand the notion of Integration and Application of integration in Economics

Course Prerequisite

Sets, Functions, Differentiation

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand Indefinite Integrals	Understand
2	Understand Definite Integrals	Understand
3	Understand Rules of Integration	Understand
4	Understand Partial Fraction	Understand
5	Understand Integration by Parts	Understand
6	Apply these concepts in Economics.	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓		✓				
CO 2	√		✓				
CO 3	√		✓			✓	
CO 4	✓		✓		✓		
CO 5	✓		✓				
CO 6	√		✓				

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	Indefi		
_	1	a) Introduction.	14
${f I}$		b) General Rules For Integration	
	2 a) Some Standard Results		
	Metho	ods of Finding Indefinite Integrals	
	1	a) Method of Substitution	
\mathbf{II}		b) Partial Fractions	14
	2	a) Problems Solving Using Partial Fractions	
		b) Some Standard Substitution	
	Defin		
	1	a) Integration by Parts	
III	2	a) Introduction	14
		b) Properties of Definite Integrals	
	Appli	13	
	1	a) Introduction	
IV		b) Consumers' Surplus	
***************************************	2	a) Producers' Surplus	
		b) Consumers' Surplus Under Monopoly	
	Teach	ner Specific Module	5
V	The R		

Essential Readings:

- Michael Hoy, John Livernois, Chris McKenna, Ray Rees, Thanasis Stengos, Mathematics for Economics Third Edition, PHI Learning Pvt. Ltd
- 2. B M Aggarwal, Business Mathematics & Staistics, Ane Books Pvt.Ltd
- 3. Edward T Dowling, Introduction To Mathematical Economics (3rd Edition), Schaum's ouT Lines

Module	Unit	Reference No.	Sections	Remarks
--------	------	---------------	----------	---------

т	1	2	Sections 6.1, 6.2	
1	2	2	Sections 6.3, 6.4	
TT	1	2	Sections 6.5, 6.6, 6.7	
11	2	2	Sections 6.8, 6.9	
Ш	1	2	Section 6.10,	
1111	2	2	Sections 6.11, 6.12	
IV	1	2	Section 7.1, 7.2	
	2	2	Sections 7.3, 7.4, 7.5	
V	1	1	Section 16.2	

Suggested Readings:

- 1. Mehta -Madani, Mathematics for Economics, Sultan Chand and Sons, Educational Publishers New Delhi
- 2. Allen.R.G.D(1956) Mathematical Analysis For Economists
- 3. Yamane, Taro (2004) Mathematics For Economists: An Elementary Survey
- 4. Chiang.A.C (1988) Fundamental Methods of Mathematical Economics, McGraw Hill

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	G ' TT' TT	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

SEMESTER - 4

KU4DSCCMT201: LAPLACE TRANSFORMS, FOURIER SERIES AND PARTIAL DIFFERENTIAL EQUATIONS

^{**} Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	DSC	200	KU4DSCCMT201	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)		
4			30	70	100	2		

Course Description

This course is to introduce Laplace Transforms, Fourier Series, partial Differential Equations, methods to solve ordinary and partial differential equations as well as integral equations

Course Prerequisite

Integration and Differentiation

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand Laplace Transforms	Understand
2	Apply Laplace Transforms to find solution of Initial value problems	Apply
3	Demonstrate Fourier Series to study the behaviour of periodic functions	Understand
4	Understand the formation and solutions of P.D.E of first and higher order	Understand
5	Apply various methods to obtain solutions to P.D.E. of first and second order which occur in Science and Engineering	Apply
6	Understand Fourier transforms	Understand

Mapping of Course Outcomes to PSOs

	1	:		PSO 4	:	
CO 1	√					
CO 2	✓		✓			

CO 3	✓	✓		
CO 4	✓			
CO 5	✓	✓		
CO 6	✓	✓		
CO 7	√	✓		

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	Laplac		
	1	a) Laplace and inverse Transforms	
I		b) S Shifting	14
		c) Transforms of derivatives	
		d) Differential equations, Initial value problems	
	2	a) Unit Step function	
	Short	impulses, System of O.D. Es	
	1		
II		b) Convolution and integral equations	14
	2	a) Differentiation and integration of Transforms	
		b) System O D.Es	
	Fourie	er Analysis	
	1	a)Fourier series of functions of period 2π	
III	2	a)Fourier series of Functions of any period	14
		b) Even Half range expansion	
		c) Odd Half range expansion	
IV	Partia	l Differential Equations	13

	1	a) Basic concepts of P.D.E				
		b) Modelling Vibrating String, Wave Equation				
	2	a) Solution by Separating Variables, Fourier series				
		b) Heat equation Solution by Fourier Series				
	Teacher Specific Module					
V	Directions					
	Fourier Transforms, Fourier cosine and Sine transforms, Linearity of Transforms and Transforms of derivatives (Section 11.8)					

Essential Readings:

1. Erwin. Kreyszig; Advanced Engineering Mathematics (10th edition); John Willey & Sons; INC.

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections 6.1, 6.2	
•	2	1	Section 6.3	
II	1	1	Section 6.4,6.5	
••	2	1	Sections 6.6, 6.7	
111	1	1	Section 11.1	
•••	2	1	Sections 11.2	
IV	1	1	Sections 12.,12.2	
	2	1	sections 12.3, 12.6	

Suggested Readings:

- 1. Erwin. Kreyszig; Advanced Engineering Mathematics (9th edition); John Wiley & Sons
- 2. G. Birkhoff & G.C Rota; Ordinary Differential Equations (Third Edition); Wiley & Sons; 1978
- 3. E.A Codington; An Introduction to Ordinary Differential Equations; Prentice Hall of India, New Delhi; 1974
- 4. Courant R and Hilbert D; Methods of Mathematical Physics, Vol.1; Wiley Eastern Reprint; 1975

5. W.E.Boyce & R.C. Deprima; Elementary Differential Equations and boundary value Problems (Second editon); John Wiley & Sons, NY; 1969.

Assessment Rubrics:

E	valuation Type	Marks		
End Sem	ester Evaluation	70		
Continuo	Continuous Evaluation 30			
a)	Test Paper *	12		
b)	Assignment	12		
c)	Seminar, Viva-Voce	6		
	Total	100		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU4DSCCMT202: GROUP THEORY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	DSC	200	KU4DSCCMT202	4	60

^{**} Use of Scientific Calculators below 100 functions (that is, upto fx 99) shall be permitted.

Learning	Approach (Hou	Mar	Duration of				
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
4		1	30	70	100	2	

Course Description

This course aims to provide a comprehensive introduction to the fundamental concepts and structures in Group Theory.

Course Prerequisite

Elementary Algebra including sets, relations, functions, equations and basic algebraic structures.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Comprehend the binary operations and their properties in the context of group theory	Understand
2	Recognize and explain the fundamental properties of groups, such as closure, associativity, identity and inverses	Understand
3	Classify and work with finite groups, understanding their structure and significance	Apply
4	Identify and prove isomorphisms between groups, recognizing the importance of structural similarities	Apply
5	Comprehend the notion of subgroups, including the criteria for a subset to be a subgroup	Understand
6	Comprehend the cyclic groups, understanding their generation and properties	Understand
7	Apply Lagrange's theorem to various problems, particularly in the context of finite groups and permutation groups	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓						

CO 2	✓				
CO 3				✓	
CO 4				✓	
CO 5	✓				
CO 6	✓				
CO 7				✓	

COURSECONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	Intro	duction to Group	
	1	Groups	
I		a) Binary Operations	14
1		b) Groups: Definition and Examples	14
		c) Elementary Properties of Groups	
		d) finite Groups and Group Tables	
	Subg	roups	
	1	Isomorphic Binary Structures	
	2	Subgroups, Cyclic subgroups	14
II		a) Subgroups	
		b) Cyclic subgroups	
	Cycli	c Groups & Groups of Permutations	
III	1 Cyclic Groups		14
	2	Groups of Permutations	
IV	The A	Alternating Group	13

	1	a) Orbits	
		b) Cycles	
		c) The Alternating Groups	
	Teach	ner Specific Module	
V	The n	otion of Coset, Properties of Coset	
	Lagra	nge's theorem	5
		cation of Cosets to Permutation groups: the rotation group of a Cube occer Ball(Relevant Sections from Chapter 7)	

Essential Readings:

- 1. John B. Fraleigh; A First Course in Abstract Algebra; 7th Ed.; Pearson; 2002.
- 2. Joseph A Gallian; Contemporary Abstract Algebra; 9th Edition; Cenage Learning; 2017

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections 2,4	
II	1	1	Section 3	
11	2	1	Sections 5	
	1	1	Sections 6	
III	2	1	Sections 8	
IV	1	1	Sections 9	

Suggested Readings:

- 1. Charles C Pinter; A book of Abstract Algebra; Dover Publications, Inc., Mineola, New York; 2010.
- 2. David S Dummit, Richard M Foote; Abstract Algebra; John Wiley & Sons Inc; 2004.
- 3. I N Herstein; Topics in Algebra; Wiley India Pvt Ltd; 2006
- 4. M Artin; Algebra(Second Edition); Pearson Education India; 2015.

Assessment Rubrics:

Evaluation Type	Marks	

End Sem	ester Evaluation	70
	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	б
	Total	100

KU4DSCCMT203: MULTI VARIABLE CALCULUS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	DSC	200	KU4DSCCMT203	4	60

Learning Approach (Hours/ Week)	Marks Distribution	Duration of	
---------------------------------	--------------------	-------------	--

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

Course Description

This course is to introduce the notion of multivariable functions, their limits, continuity, partial derivatives and multiple integrals and to discuss applications of double and triple integration.

Course Prerequisite

- 1. Limit and continuity of single variable function.
- 2. Differentiation and integration of single variable function.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of multivariable functions, their limit and continuity	Understand
2	Understand the concept of Partial derivative and apply it to functions	Understand, Apply
3	Understand the concept of directional derivative and gradient vector.	Understand
4	Apply the concept of gradient vectors to find maxima and minima.	Apply
5	Understand double and triple integrals, and apply multiple integrals to find surface area	Understand, apply
6	Understand spherical and cylindrical coordinates	Understand

Mapping of Course Outcomes to PSOs

		PSO 2			PSO 6	
CO 1	/	√	√	√	 √	
CO 2	√		✓		✓	
CO 3	✓		✓			
CO 4	✓		✓			

CO 5	✓	✓		
CO 6	✓	✓		
CO 7	✓	✓		

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS				
	Multi va						
	1	a) Functions of Several Variables					
I	b) Limits and continuity						
	2	Partial Derivatives					
		a) Partial Derivatives					
	Tangent	Planes and Directional Derivatives					
		a) Tangent Planes and Linear Approximations					
II	1	b) The Chain Rule	14				
	1	c) Directional Derivatives and the Gradient Vector					
		d) Maximum and Minimum Values					
	Lagrang						
	1 Lagrange Multipliers						
		a) Lagrange Multipliers					
III		Multiple Integrals	14				
		a) Double integrals over rectangles					
	2	b) Double integrals over general regions.					
		c) Double integrals in Polar coordinates					
		d) Applications of double integrals.					
	Applicat	tions of double integrals ,Triple integrals (15.5 to 15.8)					
IV	1	a) Surface area	13				
1 4	2	Triple Integrals	1 3				
		a) Triple integrals					

	b) Triple integrals in cylindrical coordinates	
	c) Triple integrals in spherical coordinates	
V	Teacher Specific Module	5
	Jacobian, Change of Variables in Multiple Integrals	

Essential Readings:

1:Calculus Early Transcendental, Metric version, James Stewart, Daniel Clegg, Saleem Watson 9th Edition, Cengage Learning 2021.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
T	1	1	Sections 14.1,14.2	
1	2	1	Section 14.3	
T T	1	1	Section 14.4,14.5	
II	2	1	Sections 14.6,14.7	
TTT	1	1	Sections 14.8	
III	2	1	Sections 15.1 to 15.4	
IV	1	1	Sections 15.5	
	2	1	Sections 15.6,15.7,15.8	

Suggested Readings:

- 1. H. Anton, I. Bivens and S. Davis; Calculus; 10th edition; Willey
- 2. G.B Thomas Jr.,M.D Weir and Joel R.Hass; Thomas' Calculus (12th edition),Pearson,2009
- 3. S.K Stein; Calculus and Analytic Geometry; McGraw Hill, 1992.
- 4. G.F Simmons; Calculus with analytic Geometry (second edition); McGraw Hill, 1995.

Assessment Rubrics:

1	valuation Type	Marks
End Semester Evaluation		70
	us Evaluation	30
1	Test Paper *	12
b)	Assignment	12

c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU5DSCCMT301: REAL ANALYSIS - I

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSC	300	KU5DSCCMT301	4	60

Learning Approach (Hours/ Week)			earning Approach (Hours/ Week) Marks Distribution			
Lecture	Practical/ Internship	Tutorial	CE ESE Total		Duration of ESE (Hours)	
4			30	70	100	2

Course Description

This course aims to introduce properties of real line \mathbb{R} ., basic concepts and techniques of real analysis. Also it aims to introduce real sequences, subsequence and to establish convergence of sequences using theorems.

Course Prerequisite

KU3DSCCMT201: INTRODUCTION TO GEOMETRY AND ANALYSIS

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Recognize the fundamental properties of the real numbers, including algebraic, order and completeness properties of R.	Knowledge
2	Identify sequences in terms of functions from $\mathbb N$ to a subset of $\mathbb R$ and find the limit	Understand
3	Classify whether a sequence is bounded, convergent, divergent, monotone and Cauchy	Understand
4	Apply the Archimedean property and the density theorem in real numbers	Apply
5	Apply Bolzano Weierstrass Theorem and the Cauchy's convergence criterion in real sequences	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2					
CO 1	✓						
CO 2	√			√			✓
CO 3	√			√		√	
CO 4		√			√	√	
CO 5	~		√				√
CO 6	√		√			√	
CO 7		√			√	√	√

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
		The Real Numbers	
I	1	a) The algebraic and order properties of R	14
•		b) Absolute Value and the Real Line	
		c) Completeness Property of R	
		The Real Numbers	
II	1	a) Applications of the Supremum Property	14
		b) Intervals	
		Sequences And Series	
III	1	a) Sequence and Their Limits	14
111		b) Limit Theorems	14
		c) Monotone Sequences	
		Sequences And Series	
IV	1	a) Subsequences and Bolzano Weierstrass Theorem	13
		b) The Cauchy Criterion	
T 7	Teach	ner Specific Module	
V	Finite	Infinite, Countable &Uncountable sets	5

Essential Readings:

- 1. R.G Bartle and D.R Sherbert; Introduction to Real Analysis (Fourth edition); Wiley& Sons.
- **2.** Ajit Kumar, S. Kumaresan and Bhaba Kumar Sarma; A Foundation Course in Mathematics; Narosa Publishing House; 2018.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections2.1, 2.2, 2.3	
II	1	1	Section 2.4,2.5	
III	1	1	Sections 3.1, 3.2, 3.3	
IV	1	1	Sections 3.4, 3.5	

Suggested Readings:

- 5. David Alexander Brannan; A First Course in Mathematical Analysis; Cambridge University Press; US (2006).
- 6. John M. Howie; Real Analysis; Springer.
- 7. Sudhir R., Ghorpade, Balmohan V. Limaye; A Course in Calculus and RealAnalysis; Springer; 2006.
- 8. Houshang H. Sohrab; Basic Real Analysis; Birkhäuser.
- 9. K.A. Ross; Elementary Analysis: The Theory of Calculus; Springer; 2013.
- 10. J.V. Deshpande; Mathematical Analysis and Applications; Alpha ScienceInternational Ltd.; 2004.
- 11. Charles G. Denlinger; Elements of Real Analysis; Jones and Bartlett Publishers Sudbury; Massachusetts (2011).

Assessment Rubrics:

	Evaluation Type	Marks
1	ester Evaluation	70
Continuou	ntinuous Evaluation 30	
	Test Paper *	12
b)	Assignment	12
	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU5DSCCMT302: ALGEBRA AND LINEAR ALGEBRA

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSC	300	KU5DSCCMT302	4	60

Learning	Mar	Duration of					
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)	
4			30	70	100	2	

Course Description

This course is to introduce the notion of multivariable functions

Course Prerequisite

1. Binary Operation. 2. Group Theory.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of Rings and Fields	Understand
2	Apply the concept of Rings and Fields to solve Linear Congruence.	Understand, Apply
3	Understand the concept of Vector Space.	Understand
4	Understand the concept of Basis and Dimension.	Understand
5	Understand the concept of Linear Transformation.	Understand

Mapping of Course Outcomes to PSOs

	Trupping of Course Gueenies to 1 S of							
	PSO 1		i	1	1	PSO 6	i	
CO 1	✓	✓		✓		✓		
CO 2						✓		
CO 3	√							
CO 4	√							
CO 5	✓							
CO 6	✓							
CO 7	√							

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS	
	Rings An	d Fields		
I	1	a) Rings and Fields	14	
		b) Integral Domains		
	Rings of	Polynomials		
II	1	a) Fermat's and Euler's Theorem	14	
	Vector Spaces			
III	1	14		
	Change of Basis			
IV	1 Linear Independence, Basis, Coordinates, Dimension, Basis and dimension in \mathbb{R}^n .			
₹7	Teacher Specific Module			
\mathbf{V}	Linear Transformation			

Essential Readings:

1:J.B Fraleigh; A First Course in Abstract Algebra (7th Edition); Pearson Education Limited; 2014.
2: M. Anthony and M. Harvey; Linear Algebra- Concepts and Methods; Cambridge University Press; 2012.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections 18,19	
II	1	1	Section 20	
III	1	2	Sections 5.1- 5.7	
IV	1	2	Sections 6.1-6.9	

Suggested Readings:

- 1. I. N Herstein; Topics in Algebra; Wiley India Pvt. Ltd; 2006.
- 2. M. Artin; Algebra (Second Edition); Pearson Education India;2015..
- 3. Stephen H. Friedberg, Lawrence E. Spence and Arnold J. Insel; Elementary Linear Algebra A Matrix Approach (Second Edition); Pearson India Inc., 2019.
- 4. Kenneth Hoffmann and Ray Kunze, Linear Algebra (Second Edition), PHI, 2015.

Assessment Rubrics:

Evaluation Type	Marks	

	nester Evaluation	70
Continuo	ous Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, upto fx 99) shall be permitted.

KU5DSCCMT303: VECTOR CALCULUS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSC	300	KU5DSCCMT303	4	60

Learning Approach (Hours/ Week)			М	Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4			30	70	100	2

Course Description

This course is to introduce the concept of vector valued functions, their differentiation and integration. The course also discuss the line integrals and surface integrals of vector fields and the techniques to evaluate them.

Course Prerequisite

1. Multiple integrals 2. Polar coordinates, Spherical coordinates, cylindrical coordinates.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of Parametric curves	Understand
2	Understand the concept of Vector functions, their derivatives and integrals.	Understand,
3	Understand the concept of vector fields and evaluate the line integrals of vector fields	Understand, Apply
4	Understand curl ,divergence and surface, integrals of vector fields	Understand,
5	Apply Green's theorem, Stokes theorem, Divergence theorem to evaluate integrals.	Apply

Mapping of Course Outcomes to PSOs

	i	i	i	i	PSO 5		i
CO 1	✓	✓		✓		✓	
CO 2						✓	
CO 3	✓						
CO 4	✓						

CO 5	✓			
CO 6	✓			
CO 7	1			

COURSE CONTENTS

Contents for Classroom Transaction

ODULE	UNIT DESCRIPTION	HOUR					
I	Parametric curves and vector functions						
	1 a)curves defined by parametric equations						
	b)calculus with parametric curves						
	2 a) Vector Functions and space curves						
	b) Derivatives and integrals of vector functions.						
	Vector fields and Line integrals						
	1 Vector fields						
II	a) Vector fields	14					
11	2 Line integrals	14					
	a) Line integrals						
	b) Fundamental theorem for line integrals						
	Green's Theorem, Curl and divergence ,Parametric surfaces						
III	1 a) Green's Theorem	14					
111	b) Curl and divergence	14					
	a) Parametric surfaces and areas						
	Surface integrals, Stokes theorem and Divergence theorem						
IV	1 a) Surface integrals						
1 V	2 The stokes theorem and divergence theorem	13					
	a) Stokes Theorem						
	b) The Divergence theorem						
	Teacher Specific Module						
V	Graphs of three dimensional surfaces, Relevant problems from books	the reference 5					

Essential Readings:

1. Calculus Early Transcendental, Metric version, James Stewart, Daniel Clegg, Saleem Watson 9th Edition, Cengage Learning 2021.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
т	1	1	Sections 10.1,10.2	
.	2	1	Section 13.1,13.2	
II	1	1	Section 16.1	
44	2	1	Sections 16.2,16.3	
III	1	1	Sections 16.4,16.5	
	2	1	Section 16.6	
IV	1	1	Section 16.7	
	2	1	Sections 16.8,16.9	

Suggested Readings:

- 1. H. Anton, I. Bivens and S. Davis; Calculus; 10th edition; Willey.
- 2. G.B Thomas Jr., M.D Weir and Joel R.Hass; Thomas' Calculus(12th edition); Pearson; 2009
- 3. S.K Stein; Calculus and Analytic Geometry; McGraw Hill; 1992.
- 4. G.F Simmons; Calculus with Analytic Geometry(second edition); McGraw Hill; 1995.

Assessment Rubrics:

	Evaluation Type	Marks
End Seme	ester Evaluation	70
	s Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

KU5DSECMT301: PROGRAMMING USING SCILAB

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSE	300	KU5DSECMT301	4	75

Learnin	Marks Distribution			Duration		
Lecture	Practical	Tutorial	CE	ESE	Total	of ESE (Hours)
3	1+1	1	35	65	100	1.5

Course Description

This course is to learn a programming language and to visualize the known concepts and results in Mathematics through programming.

Course Prerequisite

Calculus, numerical integration, numerical differentiation, solution of ODE, PDE, system of equations, system of ODE.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand programming language	Understand
2	Comprehend the conversion of mathematical problems to programmes	Apply
3	Apply the language to visualize the solutions of various problems.	Apply

Mapping of Course Outcomes to PSOs

			PSO 5		
CO 1	✓				
CO 2				✓	

CO 3	✓			
CO 4	✓			
CO 5	✓			
CO 6	✓			
CO 7	✓			

COURSE CONTENTS

MODU LE	PAR T	DESCRIPTION	HOURS
1	1	Introduction to Scilab and basic operations. a) The general environment and the console b) Basic data types c) Constants, variables d) Basic input output using disp and input.	11
II	1	Matrices and arrays a) Matrices of numbersb) Matrix operationsc) Matrix functions	11
III	1	Scilab programming fundamentals a) Conditional statements b) Looping constructs c) Break and continue statements 	11
IV	1	Graphics and visualization a) The graphic window b) 2-D plotting c) 3-D plotting	12

	Teacher specific module	
V	 Program to reverse a given number Program to generate first 'n' Fibonacci numbers Program to generate first 'n' prime numbers Program to generate first 'n' perfect numbers Program to multiply two matrices without using Scilab matrix multiplication command Program to solve a linear system of equations Program to find a root of an algebraic/transcendental equation by iteration method bisection method Program to sketch a surface of the type z=f(x,y) 	30

9. Program to evaluate line integral by 1) midpoint rule and find the error. 2) trapezoidal rule and find the error. 3) Simpson's 1/3-rule and find the error. 10. Program for double integration with 1) limits fixed 2) limits varying 11. Program to evaluate the y-value at any point x and to sketch the curve by 1) Lagrange's interpolation 2) Newton's divided difference formula 3) Newton's Forward Interpolation formula 4) Newton's Backward Interpolation formula 12. Program to evaluate the derivative numerically 13. Program to solve a n Initial value problem

2. <u>Claude Gomez, C. Bunks, J.P. Chancelier, F. Delebecque, M. Goursat, R. Nikoukhah, S. Steer;</u> Engineering and Scientific Computing With Scilab; Birkhauser Boston; 1999.

Reference Distribution

Module	Unit	Reference No.	Chapters	Remarks
I	1	1	Chapters 1, 2.1	
II	1	1	Chapters 2.2, 4.1	
III	1	1	Chapter 2.3, 2.4	
IV	1	1	Chapter 3	
V		1	Relevant Chapters from the Book	

Suggested Readings:

- 1. The Scilab Consortium. Scilab. http://www.scilab.org.
- 2. Text Book Companion in https://scilab.in
- 3. Sandeep Nagar; Introduction to Scilab- For Engineers and Scientists; Apress; 2017.
- 4. RajanGoyal and Mansi Dhingra; Programming in Scilab; Alpha Science Int. Ltd.; 2019

Assessment Rubrics:

	Evaluation Type	Marks
	mester Evaluation	65(50T+15P)
(ESE)		
Continu	ous Evaluation(CCA)	35(25T + 10P)
Theory		
a)	Test Paper *	10
b)	Assignment	10
c)	Viva-Voce,Seminar	5
Practica	al	
a)	Skill	4
b)	Record	4
c)	Punctuality	2
Total		100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

KU5DSECMT302: AUTOMATA

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSE	300	KU5DSECMT302	4	60

Learning Approach (Hours/ Week)			Mar	ks Distribut	ion	Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

Course Description:

Formal languages and automata theory deals with the concepts of automata, formal languages, grammar, and computability. Automata theory provides a simple, elegant view of the complex machine that we call a computer. This course gives a pathway to advanced studies in theoretical computer science.

Course Prerequisite:

Basics in discrete mathematics.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	To provide basic understanding of Discrete Mathematics	Understand
2	To connect regular expressions, Languages and automata	Understand, Apply
3	Develop the ability to categorise different types of mathematical models of computation.	Analyse, Skill
4	To develop the skill of solving real life problems through mathematical modelling	Apply

	Mapping of Course Outcomes to PSOs						
	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	√	√					
CO 2		√	√				
CO 3		√	√				√
CO 4	✓	√	√				
CO 5							
CO 6							
CO 7	✓			✓	✓		

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
I		a) Automata, Computability and complexity	14

		b) Mathematical notations and terminology		
	r	c) Relations, Functions and Graphs		
		d) Strings Languages, Boolean logic.		
		a) Regular Languages: Finite Automata		
II	i i	b) Non determinism	14	
	-	c) Regular expressions		
		d) Non-regular languages		
III	1	a) Context free languages and grammars(2.2-2.3)	14	
		b) Pushdown Automata		
		c) Non-context free languages		
IV	1	a) Turing Machine	13	
- '	r	b) Variants of Turing Machines		
	Teacher	Specific Module		
V	Directions			
	Problem	discussions from Module 1,2 and 3		

1. Michael Sipser; Introduction to the Theory of Computation; Cengage Learning; 3rd Edition; 2012 **Reference Distribution:**

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	0.1,0.2	
II	1	1	1.1 -1.4	
III	1	1	2.1- 2.3	
IV	1	1	3.1-3.2	

Suggested Readings:

- 1) G.E.Revesz; Introduction to Formal Languages; Dover, 2012.
- 2) K. L. P. Mishra, N. Chandrasekharan; Theory of Computer Science: AutomataLanguages and Computation; PHI; 2006.
- 3) P.Linz; An Introduction to Formal Languages and Automata; 6th edition, Jones and Bartlettudent Edition; 2012
- 4) Hop Croft J.E Motwani R, Ullman J.D; Introduction to Automata Theory, Languagesand Computation, 2nd Edition, Pearson 2001

Assessment Rubrics:

E	valuation Type	Marks		
End Sem	ester Evaluation	70		
	us Evaluation	30		
a)	Test Paper *	12		
b)	Assignment	12		
c)	Seminar, Viva-Voce	6		
	Total	100		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU5DSECMT303: MATHEMATICAL FINANCE

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSE	300	KU5DSECMT303	4	60

Learning Approach (Hours/ Week)	Marks Distribution	Duration of ESE (Hours)
---------------------------------	--------------------	----------------------------

^{**} Use of Scientific Calculators below 100 functions (ie up to fx99) shall be permitted.

Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	
4			30	70	100	2

Course Description

This course is designed to understand the applications of Mathematical tools in Economics

Course Prerequisite

Matrices, Integration, Basic Economics

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Apply the concept of single variable and several variable calculus to the problems in economics	Apply
2	Analyse the money market and goods market and understand the trade strategy and use it effectively	Analyze
3	Create an optimum solution in terms of productivity and profitability for economic problems	Create
4	Apply Pareto optimality conditions	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	√	√	✓				
CO 2		✓					
CO 3	√	✓	√	✓			
CO 4	√	√	√	✓			

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
		Applications of Calculus in Finance	
		Production Functions, Cost Functions, Revenue and Profit Functions,	
		Demand Functions and Elasticity	

	Fundamentals of Economics	5
V	Teacher Specific Module	
	Economics	
	Fundamental Welfare Theorems, Fundamental Theorem of Welfare	
	Necessary and Sufficient Condition for a Pareto Optimum, The	
	Slutsky Equation, The Cost Function	
	Function, The Expenditure and Compensated Demand Functions, The	
	Utility Maximization, The Demand Function, The Indirect Utility	
- '	Saddle Point Approach	
IV	Concave Programming-Unconstrained Problems, Constrained Problems,	13
	Concave functions in Economics, Quasi Concave and Quasi Convex Functions, Calculus Criteria, Pseudo Concave Functions	
	Conceye functions in Economics Overi Conceye and Overi Convey	
	Advanced Calculus in Finance	
	Homogenization	
	Economic Applications of Euler's theorem, Economic Applications of	
	Functions in Economics, A Calculus Criterion for Homogenity	
III	Homogeneous Functions, Definition and Examples, Homogeneous	14
	Discriminating Monopolist, Least Squares Analysis	1.4
	One Constraint, Other Approaches, Profit-Maximizing Firm,	
	Definiteness and Optimality	
	Conditions and Convexity, Conic Sections, The Definiteness of matrix	
	Quadratic Forms, Definiteness of Quadratic Forms, Second Order	
	Optimization in Finance	
	The Investment Model, IS-LM Analysis, Supply Demand	
II	Budget Sets in Commodity Space, Input Space, Probability Simplex	14
	Applications to Portfolio Theory IS-LM analysis via Cramer's rule	
	Examples of Linear Models	
	Linear Algebra in Finance	
	Simpson's Paradox	
	System of implicit functions(Proof excluded), Comparative Statics,	
	Interretation, An Application of higher derivative in Economics	
I	Economic Interretation, Marginal Products, Elasticity, Geometric	14
	Optimal Holding Time	
	Base10 Logarithms, Base e Logarithms, Present Value, Annuities,	

- 1. Carl P.Simon and Lawrence, Mathematics for Economists, Blume Viva Books, 2018
- $2. \ \ Knut\ Sydsaeter,\ Peter\ Hammond,\ Arne\ Strom,\ Essential\ Mathematics\ for\ Economic\ Analysis (4^{th})$

Edition), Pearson Publication, 2012

Reference Distribution:

Module	Unit	Essential Reading No.	Chapters	Remarks
I		1	Sections: 3.6, 5.3, 5.6, 14.2,14.3,14.8,15.3,15.4,15.6	
П		1	Sections: 6.2, 7.4,9.3,10.7,26.4	
III		1	Sections: 16.1-16.3,17.5, 20.1-20.3	
IV		1	Sections: 21.2,21.3-21.5,22.1-22.4	

Suggested Readings

- 1. Chiang C; Fundamental Methods of Mathematical Economics; McGraw Hills.
- 2. Budnick, Frank; Applied Mathematics for Business, Economics and Social Sciences; McGraw Hills Education; 2017.

Assessment Rubrics:

F	Evaluation Type	Marks
End	Semester Evaluation	70
Cor	ntinuous Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

** Use of Calculators shall not be permitted.

KU5DSECMT304: NUMBER THEORY AND CRYPTOGRAPHY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSE	300	KU5DSECMT304	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
4			30	70	100	2	

Course Description

This course is to introduce Divisibility property, Congruence and its application in Cryptography.

Course Prerequisite

1. Basic number theoretic concepts. 2. Congruence

Course Outcomes

CO No.	EXPECTED OUTCOME	LEARNING DOMAINS
1	Understand the concept of Divisibility.	Understand
2	Apply the concept of Division Algorithm to find G.C.D.	Understand, Apply
3	Understand the concept of Congruence.	Understand
4	Understand how to apply Euler's and Fermat's theorem.	Understand
5	Understand how to encrypt and decrypt ising various crypto system.	Understand

Mapping of Course Outcomes to PSOs

		PSO 2			
CO 1	✓	✓	✓	✓	
CO 2				✓	
CO 3	✓				
CO 4	✓				
CO 5	✓				
CO 6	✓				
CO 7	✓				

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	Divisib	ility Theory in Integers	
I		The Division Algorithm	14
	1	The Greatest Common Divisor	14
		The Euclidean Algorithm	
	1	The Diophantine Equation ax+by=c.	
II	2	The Fundamental Theorem of Arithmetic.	14
	Congri	uences	
III		Basic Properties of Congruences.	14
	1	Linear Congruence and Chinese Remainder Theorem.	4-7
	Crypto		
		The Shift Cipher.	
		The substitution Cipher	
IV		The Affine Cipher	13
-,		The Vigenere Cipher	
	1	The Hill Cipher	
		The Permutation Cipher	
		Stream Ciphers	
	Teache	er Specific Module	
V	1	Fermat's Little Theorem and Pseudo primes.	5
		Wilson's Theorem.	

Essential Readings:

- 1. David . M. Burton , Elementary Number Theory (Seventh Edition), Mc Graw Hill, 2010.
- 2. Douglas R. Stinson, Cryptography Theory and Practice, Third Edition, CRC Press, 2006.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections 2.2, 2.3, 2.4	
II	1,2	1	Sections 2.5, 3.1.	
III	1	1	Sections 4.2, 4.4.	
IV	1	2	Sections 1.1	

Suggested Readings:

- 1. C. Y. Hsuing; Elementary Theory of Numbers; Allied Publishers; 1995.
- 2. G.E. Andrews; Number Theory; Dover publications Inc.; 1995.
- 3. William Stallings; Cryptography and Network Security Principles and Practices; Fourth Edition; Prentice Hall.
- 4. Christof Paar-Jan Pelzl; Understanding Cryptography A Text for Students and Practitioners; Springer.

Assessment Rubrics:

E	valuation Type	Marks		
End Sem	ester Evaluation	70		
Continuo	us Evaluation	30		
a)	Test Paper *	12		
b)	Assignment	12		
c)	Seminar, Viva-Voce	6		
	Total	100		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

SEMESTER - 6

KU6DSCCMT301: COMPUTATIONAL LINEAR ALGEBRA

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSC	300	KU6DSCCMT301	4	60

Learning Approach (Hours/ Week)			Mar	ks Distribut	ion	Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4			30	70	100	2

Course Description

This course is one of the mathematical foundations for machine learning. It aims to understand linear transformation, diagonalisation of a square matrix, inner products and orthogonal diagonalisation of symmetric matrices which are essential to learn basic concepts in machine learning.

Course Prerequisite

KU5DSCCMT302: ALGEBRA AND LINEAR ALGEBRA

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Explain what is meant by a linear transformation and be able to prove a given mapping is linear.	Understand
2	Identify the range and null space and determine rank, nullity of a linear transformation.	Understand
3	Find the matrix representation of a transformation with respect to two given bases.	Understand

4	Compute eigenvalues and eigenvectors for a square matrix.	Apply
5	Determine whether or not a matrix can be diagonalised and diagonalise a diagonalisable matrix.	Apply
6	Acquire the concept of inner product on a vector space.	Understand
7	Apply Gram-Schmidt orthonormalisation process	Apply
8	Identify orthogonal diagonalisation	Understand
9	Classify the quadratic form as positive definite, positive semi- definite, negative definite, negative semi- definite and indefinite.	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓						
CO 2	✓			✓			√
CO 3	√			√		√	
CO 4	<u> </u>	√			√	√	
CO 5	✓		✓				√
CO 6	✓			✓			
CO 7		√				√	
CO 8	✓	√			√		√
CO 9			✓		✓		√

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS	
I	1	LINEAR TRANSFORMATIONS AND CANGE OF BASIS		

	a) Linear transformations	14	
	b) Range and null space		
	c) Coordinate change		
	d) Change of Basis and similar	rity	
	1 DIAGONALISATION		
II	a) Eigenvalues and eigenvecto	rs 14	
11	b) Diagonalisation of a square		
	c) When is diagonalisation pos	ssible?	
	1 INNER PRODUCTS AND ORTH	HOGONALITY	
	a) Inner products		
Ш	b) Orthogonality	14	
	c) Orthogonal matrices		
	d) Gram-Schmidt orthonormal	isation process	
	1 ORTHOGONAL DIAGONALISATI APPLICATIONS	ON AND ITS	
IV	a) Orthogonal diagonalisation	of symmetric matrices 13	
	b) Quadratic forms		
	Teacher Specific Module		
V	Applications of Diagonalisation and Discussion on activities and comments on activities of modules I to IV		

2. M. Anthony and M. Harvey, Linear Algebra- Concepts and Methods, Cambridge University Press, 2012.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
Ι	1	1	Sections7.1 –7.8	

II	1	1	Section 8.1- 8.7	
III	1	1	Sections 10.1- 10.8	
IV	1	1	Sections 111, 11.6	

Suggested Readings:

- 1. S.H. Friedberg, A. J. Insel and L.E. Spence; Linear Algebra (4th edition); PH Inc
- 2. Kenneth Hoftnan& Ray Kunze; Linear Algebra (Second Edition); Prentice- Hall of India Pvt. Ltd; 2015
- 3. R. Larson and D.C. Falvo; Elementary Linear Algebra (6th edition); Houghton Mifflin Harcourt Publishing Company
- 4. J.R. Kirkwood and B.H. Kirkwood; Elementary Linear Algebra; CRC Press
- 5. Lee W. Johnson, R. Dean Riess, Jimmy T. Arnold; Introduction to Linear Algebra, Fifth edition; Pearson Education, Inc.; 2002.
- 6. Gilbert Strang; Introduction to Linear Algebra, 5th Edition;
- 7. T S Blyth, E F Robertson; Linear Algebra; Springer; Second Edition.
- 8. Thomas Banchoff, JohnWermer; Linear Algebra Through Geometry; 2nd Edition; Springer

Assessment Rubrics:

E	valuation Type	Marks		
End Semester Evaluation		70		
Continuo	us Evaluation	30		
a)	Test Paper *	12		
b)	Assignment	12		
c)	Seminar, Viva-Voce	6		
	Total	100		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU6DSCCMT302: ADVANCED OPTIMIZATION TECHNIQUES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSC	300	KU6DSCCMT302	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of ESE
Lecture	Practical/ Internship	Tutorial	CE	CE ESE Total		
4			30	70	100	2

Course Description:

At the end of the course the student will be able to find a basic feasible solution of Transportation problem and a minimum transportation Schedule. This course also discusses methods to find shortest path in a network and the mathematics required to solve different types of games.

Course Prerequisite:

1. Distribution Function 2. Elem

2. Elementary row operations of Matrices.

Course Outcomes:

CO No.	Expected Outcome	Learning Domains

1	Understand, formulate and solve a transportation problem and find the minimum transportation cost.	Understand, Apply
2	Able to find shortest path in a Network	Understand
3	Understand the concept of CPM and PERT	Understand, Apply
4	Understand how optimal strategies are formulated in competitive environment.	Understand
5	Apply various methods to select the optimal strategies to win the game	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓	✓					
CO 2		✓	√				
CO 3		✓	✓				✓
CO 4	✓	√	√				
CO 5	√	✓					
CO 6	✓	√					
CO 7	~			√	√		

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	Transp	ortation Problem	
T		a) Formulating Transportation Problem.	14
-	1	b) Finding Basic Feasible Solutions for Transportation Problems	17
		c) The Transportation Simplex method	

		d) Sensitivity analysis for Transportation problem		
	Netwo	rking in Project Planning		
		e) Introduction		
	1	f) Network		
		g) Numbering the event or labeling		
II		h) Algorithm for framing a Network	14	
		i) Critical Path Method		
		j) Critical Path Analysis		
		k) Project Evaluation and Review Technique		
		l) Distinction between CPM and PERT		
	Theory	of Games		
		e) Introduction		
		f) Game	•	
		g) Strategy		
	I	h) Two-Person zero-sum games		
III		i) Payoff Matrix	14	
		j) The Maxmin and Minimax principles		
		k) Saddle point and value of the game		
		l) Algorithm for determining a saddle point		
		m) Game without a saddle point-mixed strategy		
		n) Technique for mixed strategy		
		o) Saddle point of a function		
	Solving	g different types of Matrix Games		
IV		a) Solution of a 2x2 rectangular games without a saddle point	13	
	1	b) Dominance property		
		c) General rules for Dominance		

	Problems of Module 1 from Text 1	•
V	Directions	5
	Teacher Specific Module	
	f) Graphical method of solution of 2 x n or m x 2 games	
	e) Symmetric game	•
	d) Algebraic method for solving m x n games	

- 1. A. Mukherjee, N. K. Bej; Advanced Linear programming and Gaming Theory; Books and Allied (P) Ltd.
- 2. Wayne L. Winston; Operations Research Applications and Algorithms (fourth edition); Thomson(Brooks/Cole)

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	2	Section 7.1, 7.2,7.3,7.4	Exclude programming using LINDO, spread sheet etc.
II	1	1	Sections 11.1-11.9	
III	1	1	Section 13.1–13.11	
IV	1	1	Section 13.12–13.17	

Suggested Readings:

- 1. K. Swarup, P.K.Gupta and M. Mohan; Operations Research (18th edition); Sulthan Chand and Sons
- 2. J.K. Sharma; Operations Research Theory and Applications; McMillan
- 3. H.A. Thaha; Operations Research An Introduction (8th edition); Prentice Hall
- 4. G. Hadley; Linear Programming; Oxford & IBH Publishing Company.

Assessment Rubrics:

Evaluation Type		Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
<u>i</u>	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU6DSCCMT303: NUMERICAL ANALYSIS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSC	300	KU6DSCCMT303	4	60

Learning	Marks Distribution			Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
4		1	30	70	100	2

Course Description

This course is to introduce some numerical methods to solve some concepts in Calculus.

Course Prerequisite

1. Continuity and Derivative of a function.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	To solve the algebraic and transcendental equations numerically.	Understand, Apply

^{**} Use of Scientific Calculators below 100 functions (ie up to fx99) shall be permitted.

2	Understand the finite differences and the concept of interpolation.	Understand
3	 Understand some methods for interpolation.	Understand, Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	
CO 1	✓	✓		✓		✓	
CO 2						✓	
CO 3	✓						
CO 4	✓						
CO 5	✓						
CO 6	✓						
CO 7	✓						

COURSE CONTENTS

MODULE	ULE UNIT DESCRIPTION			
	1	Solution of Algebraic and Transcendental Equations		
		a) Introduction		
I		b) Bisection method	14	
		c) Methods of False position		
		d) Iteration method		
	1	Solution of Algebraic and Transcendental Equations		
II		a) Newton Raphson method	14	
11		b) Ramanujan's method	14	
		c) The secant method		

	1	Interpolation			
		a) Introduction			
III		b) Finite Differences	14		
		c) Differences of a polynomial			
		d) Newton's formulae for interpolation			
	1 Interpolation				
IV		a) Guass' Central Difference Formulae: Guass' forward formula and Guass' backward formula only	13		
1,		b) Interpolation with unevenly spaced points:	13		
		Lagrange's interpolation formula			
	Teacher Specific Module				
V	Divided differences and their properties, Newton's central difference formula, Inverse interpolation.				

1. S.S.Sastry; Introductory Methods of Numerical Analysis(Fifth edition); PHI; 2012.

Reference Distribution:

Module	Unit	Essential Readings No.	Sections	Remarks
I 1 1 Sect		Sections 2.1 to 2.4		
II	1	1	Sections 2.5 to 2.7	
III	1	1	Sections 3.1, 3.3, 3.5, 3.6	
IV	1	1	Sections 3.7.1, 3.9.1	

Suggested Readings:

- 1. S. Sankara Rao; Numerical methods of Scientists and Engineers (Third Edn); PHI; 2007.
- 2. F.B.Hildebrand; Introduction Numerical Analysis; Dover publications; 2013.
- 3. J.B. Scarborough; Numerical Mathematical Analysis; Oxford and IBH;2005.

Assessment Rubrics:

Evaluation Type	Marks	

	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
Total		100

KU6DSECMT301: COMPLEX ANALYSIS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSE	300	KU6DSECMT301	4	60

Learning	Approach (Hou	Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

Course Description

This course is to introduce Complex Analysis as an extension of Real Analysis by extending the familiar real calculus to complex calculus by introducing complex numbers and functions.

Thus, in certain ways, problems that are difficult to solve in real calculus may be much easier to solve in complex analysis. Complex analysis is important in applied mathematics for three main reasons

- 1. Two-dimensional potential problems can be modelled and solved by methods of analytic functions. This reason is the real and imaginary parts of analytic functions satisfy Laplace's equation in two real variables.
- **2.** Many difficult integrals (real or complex) that appear in applications can be solved quite elegantly by complex integration.
- **3.** Most functions in engineering mathematics are analytic functions, and their study as functions of a complex variable leads to a deeper understanding of their properties and to interrelations in complex that have no analogue in real calculus.

Course Prerequisite

Basic idea of Complex numbers, algebra of complex numbers, powers and roots.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of Analytic Functions, Cauchy–Riemann Equations, Laplace's Equation, Harmonic functions and Harmonic conjugates,	Understand
2	Understand the concept of Exponential Function, Trigonometric Functions, Hyperbolic Functions, Logarithmic functions and General Power of complex numbers	Understand Apply
3	Understand the concept of line integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula and derivatives of analytic functions	Understand, Apply
4	Understand how to apply convergence of Sequences and Series of complex numbers and functions.	Understand, Apply
5	Understand power series, functions given by power series, Taylor series, Maclaurin's Series and Laurent Series	Understand, Apply
6	Understand singularities and zeros of complex functions	Understand, Apply
7	Understand residue integration method	Understand, Apply

Mapping of Course Outcomes to PSOs

		PSO 2			
CO 1	✓	✓	✓	✓	
CO 2				√	

CO 3	✓			
CO 4	✓			
	✓			
CO 6	✓			
CO 7	✓			

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS	
	Complex Functions, Complex differentiation			
_	Derivative, Analytic Function, Cauchy–Riemann Equations (Proof of the derivation of CR equations excluded)			
I	1	Laplace's Equation, Harmonic functions	14	
		Exponential Function, Trigonometric and Hyperbolic Functions, Euler's Formula,		
		Logarithm, General Power, Principal Value		
		Complex Integration		
	1	Line Integral in the Complex Plane.		
II	2	Cauchy's Integral Theorem, Cauchy's Integral Formula,	14	
		(Proof of Cauchy's Integral theorem, Existence of Indefinite integrals are excluded)		
	3	Derivatives of Analytic Functions (Proof of derivatives of analytic functions are excluded)		
	Power Series, Taylor Series			
III	Sequences, Series, Convergence tests		14	
	1	Power Series, Functions given by Power Series (without proof)	14	

		Taylor and Maclaurin's Series (Proof of Taylor's theorem excluded) (Sections 15.1- 15.4)		
	Laurent	Laurent Series, Residue Integration		
	Laurent Series (Proof of Laurent's Theorem excluded)			
IV		Singularities	13	
	1	Zeros, Infinity		
		Residue		
	Teacher Specific Module			
	1	Methods of finding Analytic functions whose real/imaginary parts are given.		
• •	•	Methods of finding Harmonic conjugates	_	
V		Evaluation of line integrals	5	
		Practical methods for finding Taylor Series		
		Practical methods for finding Laurent's Series		
		Residue Integration Method (Sections 16.3).		

Erwin Kreyszig, Advanced Engineering Mathematics (Tenth edition), John Wiley, 2011.

Reference Distribution:

- 1. J.W. Brown and R.V. Churchil; Complex Variables and Applications (Seventh edition); McGraw-Hill, 2004.
- 2. L.V. Ahlfors, Complex Analysis (Third edition), McGraw-Hill, 1980.
- 3. S. Ponnusamy, Foundations of Complex Analysis (Second edition), Alpha Science International Ltd., 2005.

Reference Distribution:

Module	Unit	Reference No.	Sections	Remarks
I	1	1	Sections 13.3- 13.7	Proof of the derivation of CR equations excluded
II	1,2	1	Sections 14.1 - 14.4	Proof of the existence of indefinite integrals, Derivetive of Analytic functions are excluded

III	1	1	Sections 15.1- 15.4	Proof of Taylor's theorem excluded
IV	1	2	Sections 16.1-16.3	

Suggested Readings:

- 1. Murray Spiegel; Complex Variables; Schaum's Outline Series; Second Edition.
- 2. S.S. Sastry; Engineering Mathematics; Vol 2 (4th edition), PHI.
- 3. J.B. Conway; Functions of One Complex Variable (2nd edition); Springer

Assessment Rubrics:

	valuation Type	Marks
	ester Evaluation	70
	us Evaluation	30
1	Test Paper *	12
	Assignment	12
	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU6DSECMT302: REAL ANALYSIS II

Semester Course Type Course Level	Course Code	Credits	Total Hours
-----------------------------------	-------------	---------	-------------

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

VI	DSE	300	KU6DSECMT302	4	60

Learnin	Marks	Duration of					
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
4			30	70	100	2	

Course Description

In this course the student will learn the basic concepts and techniques of Real Analysis. It starts from infinite series, convergence, tests for convergence, Absolute convergence, and conditional convergence. Continuous functions and the fundamental properties of continuous functions on intervals, uniform continuity are also discussed. This course also discuss the Riemann Integrals, properties classes of Riemann Integrable functions and the Fundamental theorem of calculus

Course Prerequisite

Sequences, convergence and test for convergence of sequence.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the Infinite Series, Convergence of the series and tests for the convergence. Also apply it to test the convergence of the given series.	Understand, Apply
2	Understand the concepts of Absolute convergence and conditional convergence and apply these concepts to given series.	Understand, Apply
3	Understand the various tests for Absolute convergence and non absolute convergence apply them to test the convergence of a given series	Understand, Apply
4	Understand the concept of continuous functions and its properties, combinations, uniform continuity and apply the various problems involving continuity.	Understand, Apply
5	Understand the concept of Riemann integration, its properties, Fundamental theorems of calculus and apply them in problems and theorems involving integration	Understand, Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓	√	√				✓
CO 2	√		✓			√	
CO 3	√		✓				
CO 4	√		√				
CO 5	√		✓		√		
CO 6	√		✓				
CO 7	√		√				

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	Infinite	e series	
	1	Introduction to infinite series	
		a) The n th term test	
		b) Cauchy criterion for series	14
-		c) The comparison tests	
I	2	Absolute convergence	
		a)Absolute convergence	
		b)Conditional convergence	
		c)Grouping and Re-arrangement of series	
	3	Test for absolute convergence	

		a)Limit comparison test II(with out proof)	
		a) Differ comparison test if (with out proof)	
		b) Root and ratio test(with out proof)	
		c) Integral test (with out proof)	
		d) Raabe's test 9 with out proof)	
	4	Test for non absolute convergence	
		a) Alternating series test	
		b) The Dirichlet and Abel test	
	Conti	nuous Functions	
	1	Continuous Functions	
		a) Continuous Function	
		b) Sequential criteria for continuity	14
		c) Discontinuity criteria	
	2	Combination of continuous functions	
II		a) Combination of continuous functions and examples	
		b) Composition of continuous functions and examples	
	3	Continuous function on intervals	
		a) Boundedness theorem (without proof)	
		b) Maximum- Minimum theorem (without proof)	
		c) Location of roots theorem(Without proof)	
		d) Bolzano's intermediate value theorem	
		e) Preservation of intervals theorem	

	Unifo	rm Continuity		
III	1	Uniform continuity		
		a) Uniform continuity		
		b) Uniform continuity theorem	14	
	2	Lipschitz functions		
		a) Lipschitz function		
		b) Continuous Extension Theorem.		
	The Ri	emann Integral.		
	1	Riemann Integral		
		a) Definition of Riemann Integral and examples		
		b) Properties of Riemann Integral		
		c) Boundedness Theorem.		
	2	Riemann Integrable functions		
		a) Cauchy criteria(without proof)	13	
IV		b) The Squeeze theorem (Without proof)		
		c) Classes of Riemann integrable functions		
		d) Additivity theorem (Without proof)		
	3	The Fundamental theorem		
		a) The Fundamental theorem of calculus first form		
		b) The Fundamental theorem of calculus second form		
		c) Substitution theorem.		

	Additional Topic offered by teacher	
	Directions	
V	a) Illustrations of the tests for convergence series	
	b) Illustrated Examples and counter examples for the topics in continuous functions	5
	c) Illustrated Examples of Riemann Integrable functions	

1. Robert G. Bartle and Donald R.Sherbert; Introduction to Real Analysis; Fourth Edn.; Wiley India edn.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
	1	1	Section 3.7	
	2	1	Section 9.1	Excluding the proof of Rearrangement Theorem
I	3	1	Section 9.2	Excluding the proof of Integral test and Raabe's Test
	4	1	Section 9.3	Excluding the proof of Abel's lemma, Dirichelet's test and Abel's Test
II	1	1	Section 5.1	
	2	1	Sections 5.2	Excluding the proof of theorems
	3	1	Section5.3	Excluding the proof of boundedness theorem, Maximum-Minimum theorem and the Location of Roots theorem
III	1	1	Sections 5.4.1, 5.4.2 and 5.4.3	

	2	1	Sections 5.4.4, 5.4.5, 5.4.6, 5.4.7 and 5.4.8	Excluding the proof of continuous extension theorem
IV	1	1	Sections 7.1	Excluding the proof of theorems 7.1.2, 7.1.3, 7.1.5 and 7.1.6
		1	Section 7.2	Excluding the proof of theorems 7.2.1, 7.2.3,7.2.4. and 7.2.5,7.2.7, 7.2.8,7.2.8, and 7.2.9
		1	Section 7.3	Excluding the proof of theorems 7.3.1, 7.3.4,7.3.5 and 7.3.8

Suggested Readings:

- 1. J.M. Howie; Real Analysis; Springer; 2007.
- 2. Ghorpade and Limaye; A Course in Calculus and Real Analysis; Springer; 2006
- 3. K.A. Ross; Elementary Analysis: The Theory of Calculus; Springer; 2013.
- 4. J.V. Deshpande; Mathematical Analysis and Applications; Alpha Science International Ltd.; 2004.

Assessment Rubrics:

E	valuation Type	Marks	
End Sem	ester Evaluation	70 30	
Continuo	us Evaluation		
a)	Test Paper *	12	
b)	Assignment	12	
c)	Seminar, Viva-Voce	6	
	Total	100	

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

**Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

KU6DSECMT303: METRIC SPACES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSE	300	KU6DSECMT303	4	60

Learnii	ng Approach (Ho	ours/ Week)	Ma	Dunation of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
4			30	70	100	2

Course Description

This course is to introduce the notion of metric spaces, sequences in metric spaces, continuity in metric spaces and some properties of metric spaces.

Course Prerequisite

1.Real Sequences, Convergence of real sequences.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of metric spaces	Understand
2	Understand the concept of open sets, closed sets, interior of a set and closure of a set.	Understand
3	Extend the concept of convergence of a sequence and the concept of Cuachysequences in to metric spaces	Understand, Apply
4	Understand the concept of continuity in metric spaces.	Understand

Mapping of Course Outcomes to PSOs

PSO 1 PSO 2 PSO 3 PSO 4 PSO 5 PSO 6 PSO

CO 1	✓	✓	✓	✓	
CO 2				✓	
CO 3	✓				
CO 4	✓				
CO 5	✓				
CO 6	✓				
CO 7	✓				

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	Basic Concepts		
Ι	1	Metric Spaces	14
	Basic C	Concepts	
II	1	Sequences in Metric Spaces.	14
	2	Cauchy Sequences	
	Topolo		
III	1	Open and Closed Sets	14
	Contin	uity	
IV	1	Continuous Mapping	13
	Teacher Specific Module		
\mathbf{V}	Inequalities		

Essential Readings:

1. Satish Shirali and Harikrishnan L Vasudeva; Metric Spaces; Springer; 2006.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections1.2	
TT	1	1	Sections 1.3	
11	2	1	Sections 1.4	
III	1	1	Section 2.1	

IV	1	1	Section 3.1	
V	1	1	Section 1.1	

Suggested Readings:

- 4. C.G.C.Pitts; Introduction to Metric Spaces; Oliver and Boyd Edingburg.
- 5. G.F.Simmons; Introduction to Topology and Modern Analysis; Tata Mc Graw Hill;1963

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
1	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

KU6DSECMT304: MATHEMATICAL ECONOMICS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSE	300	KU6DSECMT304	4	60

Learning	Approach (Hou	Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	ESE (Hours)
4		1	30	70	100	2

Course Description

This course is designed to understand the applications of Mathematical tools in Economics

Course Prerequisite

Matrices, Integration, Basic Economics

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of equilibrium analysis in Economics	Understand
2	Understand equilibrium in market and National Income Analysis	Understand
3	Understand Matrix Analysis in Economics	Understand

4	Understand the Applications of Integration in Economics	Understand	Ì
---	---	------------	---

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓		✓		✓		
CO 2		✓				✓	
CO 3	✓		✓				✓
CO 4	✓			✓			✓

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
		Equilibrium Analysis in Economics	
I	1.1	The Meaning of Equilibrium	
	1.2	Partial Market Equilibrium- A linear Model	14
	1.3	Partial Market Equilibrium- A non-linear model	
		Equilibrium and Income	
II	2.1	General Market Equilibrium	14
	2.2	Equilibrium in National Income Analysis	
		Matrix Analysis	
III	3.1	14	
	3.2 Leontif Input-Output Model	Leontif Input-Output Model	
		Applications of Integration	
IV	4.1	Some Economic Applications of Integration	13
	4.2	Domar Growth Model	
		Teacher Specific Module	
V		5	

	The Constraint Qualification	

Essential Readings

1. Alpha C Chiang, Kevin Wainwright; Fundamental Methods of Mathematical Economics; 4th Edition; 2005.

Reference Distribution:

Module		Essential Reading No.	Chapters	Remarks
1/104410	1.1	1	Chapter 3; Section 3.1	
I	1.2	1	Chapter 3; Section 3.2	
1	1.3	1	Chapter 3; Section 3.3	
	2.1	1	Chapter 3; Section 3.4	
II	2.2	1	Chapter 3; Section 3.5	
	3.1	1	Chapter 5; Section 5.6	
III	3.2	1	Chapter 5; Section 5.7	
***	4.1	1	Chapter 14; Section 14.5	
IV	4.2	1	Chapter 14; Section 14.6	
V		1	13.1-13.2	

Suggested Readings

- 6. Damodar N Gujarati, Sangeetha; Basic Econometrics(4th Edition); TMH Indian Reprint; 2008
- 7. S.P.Singh, A.K. Parashar, H.P.Singh; Econometrics and Mathematical Economics; S Chand

Assessment Rubrics:

]	Evaluation Type	Marks
End Sei	mester Evaluation	70
Continu	ous Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

** Use of Calculators shall not be permitted.

SEMESTER - 7

KU7DSCCMT401: ABSTRACT ALGEBRA

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VII	DSC	400	KU7DSCCMT401	4	60

Learning	Approach (Hou	Mar	Duration of			
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4			30	70	100	2

Course Description

This course is to provide a first approach to the subject of Algebra and provide some advanced level group theory.

Course Prerequisite

1. Basic idea about group theory

Course Outcomes

Expected Outcome	Learning Domains

1	To understand group action on a set.	Understand, Apply
2	Understand and apply the Sylow's Theorems.	Understand
3	Understand and apply isomorphism theorems.	Understand, Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓	✓		✓		✓	
CO 2		✓				✓	
CO 3	√				✓		✓
CO 4	√		✓				
CO 5	✓		✓				✓
CO 6	√				✓		
CO 7	✓				✓		

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS			
_	Structu	ire of Groups				
I	1	Finitely generated Abelian Groups	14			
	Homon	norphisms and Factor Groups				
II	1	Group Action on a Set	14			
	Advan					
III	1	Sylow Theorems and Applications of Sylow Theorems	14			
	Constr	ucting Rings and Fields, Advanced Group Theory				
IV	1	The field of Quotients of an Integral Domain	13			
	2	Isomorphism Theorems				
V	Teache	Геаcher Specific Module				

1	Series of Groups	
2	Free Abelian Groups	

Essential Readings:

1. John B Fraliegh, Neal E Brand; A First Course in Abstract Algebra(Eighth Edition); Pearson; 2021

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Chapter 2: Section 9	
II	1	1	Chapter 3: Section 14	
III	1	1	Chapter 4: Section 17	
IV	1	1	Chapter 6: Section 26	
1 1	2	1	Chapter 4: Section 16	
V	1	1	Chapter 4: Sections 18	
V	2	1	Chapter 4: Sections 19	

Suggested Readings:

- 1. Joseph A Gallian; Contemporary Abstract Algebra; Narosa; 1999.
- 2. N. Herstein; Topics in Algebra; Wiley India Pvt. Ltd; 2006.
- 3. M. Artin; Algebra (Second Edition); Addison Wesley; 2010.
- 4. David S Dummit; Abstract Algebra(Third Edition); Wiley India; 2011.
- 5. D.S. Malik, John.N. Merdson, M.K. Sen; Fundamentals of Abstract Algebra; McGraw Hill publishing Co; 1996.

Assessment Rubrics:

Evaluation Type	Marks	
End Semester Evaluation	70	

	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
	Seminar, Viva-Voce	6
	Total	100

KU7DSCCMT402: LINEAR ALGEBRA

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VII	DSC	400	KU7DSCCMT402	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

Course Description

This course is to introduce the concept of Linear Transformation and matrix properties of its related matrix.

Course Prerequisites: Matrix Theory, Vector Space, Basis

Course Outcomes

CO NO.	EXPECTED OUTCOME	LEARNING DOMAINS
1	Understand the concept of Linear Transformation.	Understand
2	Apply the concept of Matrix related to Linear transformation.	Understand, Apply
3	Understand the concept of Double Dual and Transpose.	Understand
4	Understand the concept of Diagonalisation.	Understand
5	Understand the concept of Characteristic Values	Understand

Mapping of Course Outcomes to PSOs

F	PSO 1	PSO 2			
CO 1	√	√	√	✓	
CO 2				√	
CO 3	✓				
CO 4	/				
CO 5	/				
CO 6	/				
CO 7	/				

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS
	Linear Tran	sformations	14

I	1	 a) Linear Transformations b) The algebra of Linear Transformations c) Isomorphism d) Representation of Transformation by Matrices 	
П	1	Linear Functionals The Double Dual Transpose of a Linear Transformation.	14
Ш	Elementary 1	a) Introductions b) Characteristic values c) Annihilating Polynomials	14
IV	1	 a) Invariant Subspace b) Simultaneous Triangulations & Simultaneous Diagonalisation, c) Direct Sum Decompositions 	13
V	Teacher Sp	a) Invariant Direct Sums (without proof) b) The Primary Decomposition Theorem(without proof)	5

Essential Readings:

1:Kenneth Hoffman & Ray Kunze;Linear Algebra(Second Edition); Prentice- Hall of India *Pvt*.Ltd;2015

Reference Distribution:

Module	Unit	Reference No.	Sections	Remarks
I	1	1	Sections 3.1-3.4	
II	1	1	Sections 3.5-3.7	
III	1	1	Sections 6.1-6.3	
IV	1	1	Sections 6.4-6.6	

Suggested Readings:

- 1. Stephen H Friedberg; Arnold **J** Inseland Lawrence E Spence; *Linear Algebra* (Fourth Edition); Prentice Hall; 2015.
- 2. Sheldon Axler; Linear Algebra Done Right (Third Edition); Springer; 2015
- 3. Martin Anthony and Michele Harvey; *Linear Algebra: Concepts and Methods; Cambridge* University Press; 2012
- 4. S. Kumaresan; Linear Algebra: A Geometric Approach; PHI Learning Pvt. Ltd.; 2000

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
	Seminar, Viva-Voce	6
<u>_</u>	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU7DSCCMT403: MATHEMATICAL ANALYSIS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
7	DSC	400	KU7DSCCMT403	4	60

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

Learning Approach (Hours/ Week)			Mar	Duration of			
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
4		1	30	70	100	2	

Course Description

This course aims to introduce the concepts of basic topology, limit continuity and differentiation of functions of one and several variables

Course Prerequisite

KU5DSCCMT301: REAL ANALYSIS-I,

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concepts of basic topology on <i>R</i> .	Understand
2	Apply Cauchy convergence criterion to check uniform convergence	Apply
3	Understand the basic concepts of series of functions	Understand
4	Understand the basic concepts of metric spaces	Understand
5	Apply the known concepts to identify open and closed sets in different metric spaces	Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓						
CO 2						✓	
CO 3	✓						

CO 4	✓			
CO 5	✓			
CO 6	✓			
CO 7	✓			

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	Basic T		
	1	a)Finite, Countable and uncountable Sets	
I		b) Metric spaces	14
		c) Compact Sets	
		d) Perfect Sets, Connected Sets	
	Contin	uity	
	1	a) Limits of function	
II		b) Continuous functions	14
11		c) Continuity and compactness	
		d) Continuity and connectedness	
		e) Discontinuities	
	Mono	tonic functions and Differentiation	
	1	a) Monotonic functions	
Ш		b) Infinite limits and Limits at infinity	14
		d) Mean value theorems	
		e) Continuity of derivatives	

	Diffe	rentiation	
	1	a) L Hospital's rule	
IV		b) Derivatives of higher order	13
		c) Taylor's theorem	
		d) Differentiation of vector valued functions	
	Teach	er Specific Module	
▼ 7	Direct	ions	5
V	Visualize the concepts of neighbourhoods and open balls using CAS		
	Analyse limits, continuity and discontinuity of functions using CAS		

Essential Readings:

1. Walter Rudin, *Principles of Mathematical Analysis* (Third Edition), McGraw Hill, 1976.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections Remarks	8
Ι	1	1	Chapter 2	
II	1	1	Chapter 4. Sections 4.1 - 4.27	
III	1	1	Chapter 4. Sections 4.28 - 4.34 Chapter 5. Sections 5.1 – 5.12	
IV	1	2	Chapter 5, Sections 5.13 – 5.19	

Suggested Readings:

- 1. T. M. Apostol; *Mathematical Analysis* (Second Edition); Narosa; 2002.
- 2. R. G. Bartle; The Elements of Real Analysis (Second Edition); Wiley International; 1975
- 3. G. F. Simmons; Introduction to Topology and Modern Analysis; McGraw Hill; 2017
- 4. Charles Chapman Pugh; Real Mathematical Analysis; Springer; 2010
- 5. Sudhir R. Ghorpadeand Balmohan V. Limaye; *A Course in Calculus and Real Analysis*; Springer; 2006
- 6. R. G. Bartle and D. R Sherbert; *Introduction to Real Analysis*; John Wiley Bros; 1982

- 7. L. M Graves; The Theory of Functions of a Real Variable; Tata McGraw-Hill; 1978
- 8. M. H Protter and C.B Moray; A First course in Real Analysis; Springer; 1977

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
	Test Paper *	12
b)	Assignment	12
	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU7DSCCMT404: TOPOLOGY

^{**} Use of Scientific Calculators below 100 functions (that is, upto fx 99) shall be permitted.

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VII	DSC	400	KU7DSCCMT404	4	60

Learning Approach (Hours/ Week)			Mai	Duration of			
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
4			30	70	100	2	

Course Description

In this course the student will learn the basic concepts and techniques of Topology. It starts from basic definition of topology, different topologies, basis, sub basis, subspaces, metric spaces, product spaces, continuous functions and homeomorphism. This also helps to understand topology as a general tool for analysis.

Course Prerequisite

Set theory, functions, order relations and basic concepts of metric spaces.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand topology, compare topologies, and distinguish different topologies.	Understand, Apply
2	Understand basis and sub basis, compare topologies using basis and sub basis.	Understand, Apply
3	Construction of new topologies from existing topologies – product topology, subspace topology, geometry of the product topology.	Understand, Apply
4	Understand and identify closed sets, open sets, limit points and continuous functions.	Understand, Apply
5	Compare and distinguish the product topology and box topology.	Understand, Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	√	√	√				√
CO 2	√		✓	√		√	
CO 3	√		√				√
CO 4	√	√	√	√		√	
CO 5	√		√		√	√	
CO 6	✓	√	√	√			√
CO 7	~	√	√			√	

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS		
I	TOPOLOGICAL SPACES – 1				
	1	1 Topological spaces			
1	2	Basis for a topology			
	3	The order topology			
	TOPOLOGICAL SPACES – 2				
II	1	The product topology on X x Y			
	2	The subspace topology			
Ш	TOPOLOGICAL SPACES – 3				
	1	1 Closed sets and limit points			

	2	Continuous functions	
	ТОРО	DLOGICAL SPACES – 4	
IV	1	The product topology (arbitrary product)	13
	2	The metric topology	
	TEAC	CHER SPECIFIC MODULE	
V		Order relations, Well order relations, Well ordering theorem, Maximum Principle	5

Essential Readings:

1. James Munkres; Topology; Second edition; Pearson New International Edition; 2014.

Reference Distribution:

Module	Unit	Essential ReadingNo.	Sections	Remarks
	1	1	12	
I	2	1	13	
	3	1	14	
II	1	1	15	
11	2	1	16	
III	1	1	17	
111	2	1	18	
IV	1	1	19	
# Y	2	1	20	Proof of theorem 20.5 omitted

V	1	1	10, 11	

Suggested Readings:

- 1. C. Wayne Patty; Foundations of Topology; Second Edition; Jones & Bartlett India Pvt. Ltd., New Delhi, 2012.
- 2. K. D. Joshi; Introduction to General Topology; New Age International (P) Ltd.
- 3. Dugundji; Topology; Prentice Hall of India.
- 4. G. F. Simmons; Introduction to Topology and Modern Analysis; Mc Graw Hill.
- 5. S. Willard; General Topology; Addison Wesley Publishing Company.

Assessment Rubrics:

E	valuation Type	Marks		
End Sem	ester Evaluation	70		
Continuo	us Evaluation	30		
a)	Test Paper *	12		
b)	Assignment	12		
c)	Seminar, Viva-Voce	6		
	Total	100		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU7DSCCMT405: ADVANCED ORDINARY DIFFERENTIAL EQUATIONS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VII	DSC	400	KU7DSCCMT405	4	60

Learning Approach (Hours/ Week)			Mar	Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4			30	70	100	2

Course Description

To gain knowledge on the basic differential equations at the heart of analysis which is a dominant branch of mathematics for 300 years. This subject is the natural purpose of the primary calculus and the most important part of mathematics for understanding physics.

Course Prerequisite: Calculus, real analysis and basic differential equations.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand topology, compare topologies, and distinguish different topologies.	Understand, Apply
2	Understand basis and sub basis, compare topologies using basis and sub basis.	Understand, Apply
3	Construction of new topologies from existing topologies – product topology, subspace topology, geometry of the product topology.	Understand, Apply

4	Understand and identify closed sets, open sets, limit points and continuous functions.	Understand, Apply
5	Compare and distinguish the product topology and box topology.	Understand, Apply

Mapping of Course Outcomes to PSOs

	1	1	1	1	1	PSO 6	1
CO 1	✓	/	✓				√
CO 2	✓		√	√		✓	
CO 3	✓		√				√
CO 4	√	√	√	√		√	
CO 5	√		√		✓	√	
CO 6	√	✓	√	√			√
CO 7	√	√	√			√	

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	Powe	er Series Solutions and Special Functions-1	
I	1	Second Order Linear Equations. Ordinary Points	14
	2	Regular Singular Points	
	Powe	er Series Solutions and Special Functions-2	
II	1	Regular Singular Points (Continued)	14
	2	Gauss's HypergeometricEquation	
	Some	Special Functions ofMathematical Physics 1	
III	1	Legendre Polynomials	14
	2		
IV	Some	Special Functions ofMathematical Physics2	13

	1	Bessel Functions. The Gamma Function			
	2	Properties of Bessel Functions			
	TEACHER SPECIFIC MODULE				
V	1	Introduction. A Review of Power Series	5		
	2	Series Solutions of First Order Equations			

Essential Readings:

1. G.F Simmons; Differential Equations with Historical Notes [Third Edition]; CRCPress-Taylor and Francis Group; 2017.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	28	
1	2	1	29	
II	1	1	30	
11	2	1	31	
III	1	1	44	
***	2	1	45	
IV	1	1	46	
- '	2	1	47	
V	1	1	26	
•	2	1	27	

Suggested Readings:

- 1. G. Birkoff and G. C Rota; Ordinory Differential Equations; Fourth Edition; Wiley and Sons; 1978.
- 2. E. A Coddington; An Introduction to Ordinary Differential Equations; Prentice Halt of India; 1974.
- 3. P. Hartmon; Ordinary Differential Equations; Society for Industrial and applied; 1987
- 4. Chakraborti; Elements of Ordinary Differential Equations and Special Functions; WileyEastern, 1990
- 6. L.S Poutrigardian; A Course in Ordinary Differential Equations; Hindustan Publishing Corp.; 1967
- 7. S.G Deo and V.Raghavendra; Ordinary Differential Equations and Stability Theory; Tata McGraw Hill; 1967
- 8. V. I. Arnold; Ordinary Differential Equations; MIT Press Cambridge; 1981

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
<u>.</u>	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

SEMESTER - 8
KU8DSCCMT401: ADVANCED ABSTRACT ALGEBRA

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VIII	DSC	400	KU8DSCCMT401	4	60

Learning Approach (Hours/ Week)			Mar	Duration of			
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)	
4		1	30	70	100	2	

Course Description

This course is to provide some advance concepts in abstract Algebra like Galois theory.

Course Prerequisite

2. A strong base in Group theory and Ring theory

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand ring theory in polynomials	Understand, Apply
2	Understand and applications of different type of factorization domains	Understand, Apply

3	Understand and applications of extension fields and to get some	Understand, Apply	
5	basics about Glois group.	Chacistana, rippiy	

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓	✓		✓		✓	
CO 2						√	
CO 3	✓						
CO 4	✓						
CO 5	✓						
CO 6	✓						
CO 7	✓						

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
Ι	1	Rings of polynomials, Factorization of polynomials over a field	14
II	1	Homomorphisms and Factor Rings, prime and maximal Ideals.	14
III	1	Unique Factorization Domains	14
IV	1	Euclidean Domains, Gaussian Integers and Multiplicative Norms.	13
	Teacl	ner Specific Module	
IV	1	Sylow Theorems	5

Essential Readings:

1:John B Fraliegh, Neal E Brand; A First Course in Abstract Algebra(Eighth Edition); Pearson; 2021

Module	Unit	Unit Essential Reading No. Sections		Remarks
I	1	1	Chapter 6: Sections 27,28,30,31	
II	II 1 1		Chapter 7: Sections 34 to 36.	
III	III 1 1		Chapter 8: Sections 39 to 42	

Suggested Readings:

6. Joseph A Gallian; Contemporary Abstract Algebra; Narosa; 1999.

- 7. N. Herstein; Topics in Algebra; Wiley India Pvt, Ltd; 2006.
- 8. M. Artin; Algebra (Second Edition); Addison Wesley; 2010.
- 9. David S Dummit; Abstract Algebra(Third Edition); Wiley India; 2011.
- 10. D.S. Malik, John.N. Merdson, M.K. Sen; Fundamentals of Abstract Algebra, McGraw Hill publishing Co, 1996.

Assessment Rubrics:

E	valuation Type	Marks	
End Sem	ester Evaluation	70	
Continuo	us Evaluation	30	
	Test Paper *	12	
· 1	Assignment	12	
c)	Seminar, Viva-Voce	6	
	Total	100	

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU8DSCCMT402: MEASURE THEORY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VIII	DSC	400	KU8DSCCMT402	4	60

Learning	Marks Distribution			Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4		1	30	70	100	2

^{**}Use of Scientific Calculators below 100 functions (that is, up to fx 99) shall be permitted.

Course Description

This course offers an introduction to measure theory, the field of mathematics that is the mathematical foundation of probability theory. It also has applications in functional analysis and other areas. The following concepts will be introduced: sigma-algebras, measures, measurable functions and Lebesgue integrals. We shall see how a series can be interpreted as an integral! Additionally we will discuss the most important convergence theorems.

Course Prerequisite

KU7DSCCMT403: MATHEMATICAL ANALYSIS

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of Lebesgue measurable sets and constriction of non measurable sets.	Understand
2	Understand the concepts of measurable functions.	Understand
3	Mastery in the general Lebesgue's integral and its properties	Apply
4	Understand the concepts of abstract measure space	Understand
5	Understand the concept of integration with respect to measure	Understand

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓						
CO 2						√	
CO 3	~						
CO 4	~						
CO 5	✓						
CO 6	✓						
CO 7	✓						

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS		
	Measur	re on the Real Line			
-		a)Lebesgue Outer Measure			
Ι		b) Measurable Sets	14		
		c) Regularity			
II	Measur	re on the Real Lin			
11		b) BorelandLebesgue Measurability	14		
	Integra				
III	1	e) Integration of Non-negative Functions			
		f) The General Integral	14		
		c) Riemann and Lebesgue Integrals			
	Abstrac				
IV		j) Extension of measure	13		
		k) Uniqueness of the extension			
	Teache				
V	Directions				
	Measure Spaces				
	Integration with respect to a Measure				

Essential Readings:

G De Barra, Measure Theory and Integration. (Second Edition), New Age International Pvt.Ltd., 2003.

Reference Distribution:

Module	Unit	Reference No.	Sections	Remarks
I	1	1	Chapter 2, Sections 2.1 –2.3	
II	1	1	Chapter 2, Sections 2.4–2.5	
III	1	1	Chapter 3, Sections 3.1 – 3.2,3.4	
IV	1	2	Chapter 5, Sections 5.1 – 5.3	

Suggested Readings:

- 1. Walter Rudin, Real and Complex Analysis (Third Edition), Tata McGraw Hill, 2017
- 2. H. L Royden, P M Fitzpatrick, *Real Analysis*, Pearson, Fourth Edition, Pearson, 2015
- 3. R. G. Bartle, The Elements of Integration and Measure Theory, John Wiley and Sons, 1995
- 4. P.R Halmos, *Measure Theory*, Springer, 1976
- 5. A. E Taylor, *General Theory of Functions and Integrations*, Dover Publications, 2010
- 6. Inder K. Rana, An Introduction to Measure and Integration, Narosa Publishing House, 1997
- 7. M.ThambanNair, Measure and Integration: A First Course, CRC Press, 2019

Assessment Rubrics:

E	valuation Type	Marks		
End Sem	nester Evaluation	70		
Continuo	us Evaluation	30		
a)	Test Paper *	12		
b)	Assignment	12		
c)	Seminar, Viva-Voce	6		
•	Total	100		

* A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU8DSCCMT403: ADVANCED MATHEMATICAL ANALYSIS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
8	DSC	400	KU8DSCCMT403	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	ESE (Hours)

4	1	30	70	100	2

Course Description:

This course aims to learn the real analysis in advanced level. The course provides the basis for further studies within functional analysis, topology and function theory. In this course a detailed study of Riemann-Stieltjes integral, Sequence and series of functions, uniform convergence, and the Stone-Weierstrass Theorem are included.

Course Prerequisite

KU7DSCCMT403: MATHEMATICAL ANALYSIS

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the Riemann-Stieltjes integral	Understand
2	Understand the concepts of sequence and series of functions and uniform convergence	Understand
3	Apply the concepts in uniform convergence in analysing various properties of sequences of functions	Apply
4	Understand the concepts of equicontinuous families of functions	Understand
5	Understand the Stone-Weierstrass approximation theorem	Understand

Mapping of Course Outcomes to PSOs

			PSO 4		
CO 1	✓				
CO 2				✓	
CO 3	√				
CO 4	✓				
CO 5	√				

CO 6	✓		
CO 7	✓		

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	UNIT DESCRIPTION			
	Reimann – Stieltjes integral.				
I		a)Definition and existence of the integral			
1		b) Integration and differentiation			
		c) Integration of vector – valued functions			
	Sequence and series of Functions				
II		d) Rectifiable curves			
11		e) Sequence and series of Functions: Discussion of Main Problem			
		f) Uniform Convergence			
	Sequence and series of Functions				
III	1	g) Uniform Convergence and Continuity.			
•••		h) Uniform Convergence and Integration			
		c) Uniform Convergence and Differentiation			
	The Sto	one-Weierstrass Theorem	13		
IV		l) Equicontinuous Families of Functions			
		m) The Stone-Weierstrass Theorem			
	Teache	r Specific Module	5		
V	Directions				
	Distinguish Riemann integral and Riemann-Stieltjes integral using CAS				
	Visualiz	ze the concepts of point wise and uniform convergence using CAS			

Visualize Equicontinuous Families of Functions using CAS	
ı Ç	

Essential Readings:

1. Walter Rudin; Principles of Mathematical Analysis (Third Edition); McGraw Hill; 1986.

Reference Distribution:

Module	Unit	Reference No.	Sections	Remarks
Ι	1	1	Chapter 6, Sections 6.1 - 6.25	
II	1	1	Chapter 6, Sections 6.26 - 6.27 Chapter 7, Sections 7.1 – 7.10	
III	1	1	Chapter 7, Sections 7.11 – 7.18	
IV	1	2	Chapter 7, Sections 7.19 – 7.33	

Suggested Readings:

- 11. T.M. Apostol; Mathematical Analysis (Second Edition); Narosa, 2002
- 12. R. G. Bartle; The Elements of Real Analysis (Second Edition); Wiley International; 1975
- 13. G.F. Simmons; Introduction to Topology and Modern Analysis; McGraw Hill; 2017
- 14. Charles Chapman Pugh; Real Mathematical Analysis Springer, 2010
- 15. S. R. Ghorpadeand, B. V. Limaye; A Course in Calculus and Real Analysis; Springer; 2006
- 16. R. G Bartle and D. R Sherbert; Introduction to Real Analysis; John Wiley Bros.; 1982
- 17. L. M Graves, The Theory of Functions of a Real Variable; Tata McGraw Hill; 1978
- 18. M. H Protter and C.B Moray; A First course in Real Analysis; Springer; 1977
- 19. S.L.Ross; Differential Equations (Third Edition); Wiley & Sons; 1984.
- 20. A.H.Siddiqi&P.Manchanda; A First Course in Differential Equations with Applications; Macmillan; 2006.
- 21. E.A.Coddington; An ntroduction to Ordinary Differential Equation, PHI; 2009.

1. Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12

b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (that is, upto fx 99) shall be permitted.

KU8DSECMT401: ADVANCED TOPOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VIII	DSE	400	KU8DSECMT401	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4			30	70	100	2

Course Description

In this course the student will learn the advanced concepts and techniques of Topology. It starts from connected spaces, different types of connectedness, components, connectedness on real line, compactness, and different types of compactness, separation axioms and countability axioms.

Course Prerequisite

KU7DSCCMT404: Topology

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand connected spaces and apply the concept of connectedness. Compare different types of connectedness.	Understand, Apply
2	Understand compactness and compare different types of compactness.	Understand, Apply
3	Understand separation axioms. Compare different separation axioms	Understand, Apply
4	Understand countability axiom and compare different countability axiom.	Understand, Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	~	~	√				√
CO 2	√		√	√		√	
CO 3	✓		√				√
CO 4	√	√	✓	√		√	
CO 5	✓		✓		√	√	
CO 6	√	√	✓	√			√
CO 7	✓	√	√			✓	

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS		
	CONNECTED SPACES				
_	1	Connected spaces	1.4		
I	2	Connected subspaces of the real line	14		
	3	Components and local connectedness			
	COMPACT SPACES – 1				
II	1	Compact spaces	14		
	2	Compact subspaces of the real line			
Ш	COMPACT SPACES – 2				
	1	14			

	2	Local compactness			
	COUNTABILITY AND SEPERATION AXIOMS				
IV	1	Countability axioms	13		
1 V	2	Separation axiom			
	3	Normal spaces			
V	TEACHER SPECIFIC MODULE				
V	More about metric topology		3		

Essential Readings:

2. James Munkres; Topology; Second edition; Pearson New International Edition; 2014.

Reference Distribution:

Module	Unit	Essential ReadingNo.	Sections	Remarks
	1	1	23	
I	2	1	24	
	3	1	25	
II	1	1	26	
11	2	1	27	
Ш	1	1	28	
	2	1	29	
IV	1	1	30	
- V	2	1	31	

	3	1	32	
V	1	1	21	

Suggested Readings:

- 1. C. Wayne Patty; Foundations of Topology; Second Edition; Jones & Bartlett India Pvt. Ltd., New Delhi, 2012.
- 2. K. D. Joshi; Introduction to General Topology; New Age International (P) Ltd.
- 3. Dugundji; Topology; Prentice Hall of India.
- 4. G. F. Simmons; Introduction to Topology and Modern Analysis; Mc Graw Hill.
- 5. S. Willard; General Topology; Addison Wesley Publishing Company.

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

KU8DSECMT402: PARTIAL DIFFERENTIAL EQUATIONS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VIII	DSE	400	KU8DSECMT402	4	60

Learning	g Approach (Hou	ırs/ Week)	Mai			
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	Duration of ESE (Hours)
4		0	30	70	100	2

Course Description

This course is designed to learn about partial differential equations and finding solutions using various techniques

Course Prerequisite

Differential Equations, Calculus

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the Concept of First Order Partial Differential Equations	Understand
2	Understand the Concept of Second Order Differential Equations in two independent variables	Understand
3	Understand some special Second Order Differential Equations	Understand
4	Understand the method of Separation of Variables	Understand

Mapping of Course Outcomes to PSOs

PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7

CO 1	✓			
CO 2		✓		
CO 3		✓		
CO 4		✓		

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
		First-order equations	
	-	Introduction	
	-	Quasilinear equations	
	-	The method of characteristics	
	-	Examples of the characteristics method	
I	-	The existence and uniqueness theorem	
	-	The Lagrange method	14
		General Nonlinear equations	
		Exercises	
		Second-order linear equations in two independent variables	
	-	Classification	
	<u>-</u>	Canonical form of hyperbolic equations	
II	-	Canonical form of parabolic equations	14
	-	Canonical form of elliptic equations	
		The one-dimensional wave equation	
		Introduction	

	Canonical form and general colution	
	Canonical form and general solution	
	The Cauchy problem and d'Alemberts formula	14
III	Domain of dependence and region of influence	
	The Cauchy problem for the nonhomogeneous wave	
	equation	
IV	The method of separation of variables	13
	Introduction	
	Heat equation: homogeneous boundary condition	
	Separation of variables for the wave equation	
	Separation of variables for nonhomogeneous equations	
	The energy method and uniqueness	
	Further applications of the heat equation	
V	Teacher Specific Module	5
	Variational Methods	

Essential Readings

1. YehudhaPinchover and Jacob Rubienstein; *An Introduction to Partial Differential Equations*; Camridge University Press; 2005

Reference Distribution

Module	Unit	Reference No.	Chapters	Remarks
I		1	Chapter 2.1-2.6,2.9,2,10	
II		1	Chapter 3	
III		1	Chapter 4	
IV		1	Chapter 5	
V		1	Chapter 10	

Suggested Readings

- 1. Amaranath T; Partial Differential Equations; Narosa; 1997.
- 2. A. Chakrabarti; *Elements of ordinary Differential Equations and special functions;* Wiley Eastern Ltd; 1990
- 3. E.A. Coddington; An Introduction to Ordinary Differential Equtions; Printice Hall of India; 1974
- 4. R. Courant and D. Hilbert; Methods of Mathematical Physics-Vol I; Wiley Eastern Reprint; 1975

Rubrics

E	valuation Type	Marks
End Se	mester Evaluation	70
Continu	ous Evaluation	30
a)	Test Paper *	12
b)	Assignment	12
c)	Seminar, Viva-Voce	6
	Total	100

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

MULTIDISCIPLINARY COURSES

^{**} Use of Calculators shall not be permitted.

SEMESTER - 1

KU1MDCCMT101: LOGIC, LATTICES AND BOOLEAN ALGEBRA

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
Ι	MDC	100	KU1MDCCMT101	3	45

Learnin	Learning Approach (Hours/ Week)			s Distrib		
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	Duration of ESE (Hours)
3		1	25	50	75	1.5

Course Description

This course is designed to understand the concept of Sets and lattices and its applications in Boolean Algebra.

Course Prerequisite

Sets, Relations, Functions.

Course Outcomes

CO No.	Expected Outcome	Learning
CO No.	Expected Outcome	Domains
1	Understand the Concept of Logic	Understand
2	Understand the concept of Lattices	Understand
3	Understand the concept of Boolean Algebra	Understand
4	Apply Representation Theorem.	Understand

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	1						
CO 2			✓				
CO 3			✓				
CO 4			1				

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
		Logic and Propositional Calculus	
		Introduction	
		Proposition and Compound Statements	1.1
I		Basic Logical Operations	11
		Propositions and Truth Tables	
		Tautologies and Contradictions	
		Logical Equivalence	11
		Algebra of Propositions	
II		Conditional and Biconditional Statements	
		Arguments	

	Propositional Functions, Quantifiers	
	Negation of Quantified Statements	
	Ordered Sets and Lattices	
	Introduction	
	Ordered Sets	
III	Hasse Diagrams of Partially Ordered Sets	11
	Consistent Enumeration	
	Supremum and Infimum	
IV	Isomorphic (Similar) Ordered Sets	12
	Well- Ordered Sets	
	Lattices	
	Bounded Lattices	
	Distributive Lattices	
	Complements, Complemented Lattices	

Essential Readings

1. Seymour Lipschutz, Marc Lars Lipson, Schaum's Outline of Theory and Problems of Discrete Mathematics, Third edition, McGRAW-HILL

Reference Distribution

Module	Unit	Essential Reading No.	Chapters	Remarks
I		1	Chapter 4.1-4.5	
II		1	Chapter 4.6-4.11	
III		1	Chapter 14.1-14.5	

IV	1	Chapter 14.6-14.11	

Suggested Readings

- 1. Seymour Lipschutz; Schaum's Outlines Set Theory and Related Topics, Second Edition; McGRAW-Hill.
- 2. Ralph P Grimaldi; Discrete and Combinatorial Mathematics An Applied Introduction, Fifth Edition; Addison-Wesley.
- 3. V K Balakrishnan; Introductory Discrete Mathematics; Dover Publications, INC

Assessment Rubrics

]	Evaluation Type	Marks
End Se	mester Evaluation	50
Continu	ous Evaluation	25
a)	Test Paper *	10
b)	Assignment	10
c)	Seminar, Viva-Voce	5
	Total	75

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Calculators shall not be permitted.

KU1MDCCMT102: THEORY OF MATRICES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
I	MDC	100	KU1MDCCMT102	3	45

Learning Approach (Hours/ Week)			Mar	Duration of		
Lecture	Practical/ Internship	Tutorial	CE	CE ESE Total		ESE (Hours)
3		1	25	50	75	1.5

Course Description

This course provides an introduction to matrices. Emphasis is placed on the development of concepts and applications for systems of equations, matrices, determinants, and orthogonality.

Course Prerequisite:

Matrix algebra

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Recognise consistent and inconsistent systems of equations by the row echelon form of the augmented matrix	Understand
2	Able to solve a system of m linear equations in n unknowns using Gaussian elimination	Apply
3	Understand how elementary matrix are used for row operations and find the inverse of a matrix using row operations	Apply
4	Understand the concept 'Rank of a matrix'.	Understand
5	Consistency of a system of linear equations using rank	Apply
6	Understandhow matrices and vectors are used to store data in data science contexts	Understand
7	Understand the role of matrix decomposition in data science	Understand

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	√						
	✓		✓			√	
CO 3	~	√					
CO 4	~						
CO 5	✓						
CO 6	✓			√			
CO 7	✓		✓				

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS			
	Systems	s of linear equations, Row operations				
	1 Systems of linear equations					
I		a) Systems of linear equations				
	2	Row operations				
	a) Row operations					
	Gaussia	nn elimination, Homogeneous systems and null spaces				
	1	Gaussian elimination				
		a) The algorithm: reduced row echelon form Consistent and inconsistent systems				
II		b) Linear systems with free variables	11			
		c) Solution sets				
	2 Homogeneous systems and null spaces					
		a) Homogeneous systems				
		b) Null space				
	Matrix	inversion				
		Matrix inversion				
III		a) Matrix inverse using row operations	11			
	1	b) Row equivalence				
		c) The main theorem				
		d) Using row operations to find the inverse matrix				
	The rar	nk of a matrix, Rank and systems of linear equations, Range				
IV	1	The rank of a matrix	12			
	2	Rank and systems of linear equations				

	a) General solution and rank	
	b) General solution in vector notation	
3	Range	

Essential Readings:

1. Martin Anthony and Michele Harvey Linear Algebra: Concepts and Methods, Cambridge University Press 2012.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
T	1	1	Section 2.1	
-	2	1	Section 2.2	
	1	1	Section 2.3	Proof of Theorem 2.17 omitted.
II	2	1	Section 2.4	Proof of Theorem 2.21 and Theorem 2.29 omitted.
III	1	1	Section 3.1	Proof of all the theorems in this section omitted
	1	1	Section 4.1	Proof of Theorem 4.5 omitted.
IV	2	1	Section 4.2	
	3	1	Section 4.3	

Suggested Readings:

- 1) Jeffrey Holt; Linear Algebra with Applications; W.H Freeman & Company; New York
- 2) T.S Blyth and E F Robertson; Basic Linear Algebra; Springer 2002
- 3) Charu C Agarwal; Linear Algebra and Optimization for Machine Learning; Springer; 2020
- 4) Nathen Carter; Data Science for Mathematicians; CRC Press/ Chapman and Hall Handbooks in Mathematics series; 2021.

Assessment Rubrics:

Evaluation Type	Marks
End Semester Evaluation	50

	s Evaluation	25
	Test Paper *	10
b)	Assignment	10
	Seminar, Viva-Voce	5
	Total	75

SEMESTER - 2

KU2MDCCMT101: NUMERICAL ABILITY

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
II	MDC	100	KU2MDCCMT101	3	45

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	ESE (Hours)
3		1	25	50	75	1.5

Course Description

This course is designed to equip students with essential knowledge and skills required to excel in permutation and combination and its applications.

Course Prerequisite

Basic operations in mathematics

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of Permutation and Combination	Understand
2	Understand the concept of principle of inclusion and exclusion	Understand
3	Apply principle of Inclusion and Exclusion	Understand
4	Understand the concept of Generating Functions	Understand

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	1						
CO 2			1				
CO 3			✓				
CO 4			✓				

COURSE CONTENTS

147

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	1	Permutations	
_	2	2 Combinations: Binomial Theorem	
I	3	Combinations with Repetition	
	1	The Principle of Inclusion and Exclusion	
II	2	Generalizations of the Principle	11
	1	Introductory Examples	
III	2	Definition and Examples: Calculational Techniques	11
137	3	Partitions of Integers	12
IV	4	The Exponential Generating Function	

Essential Readings

1. Ralph P. Grimaldi; Discrete and Combinatorial Mathematics (Fourth Edition); Pearson Education.

Reference Distribution

Module	Unit	Essential Readings No.	Chapters	Remarks
	1	1	Chapter 1.2	
I	2	1	Chapter 1.3	
1	3	1	Chapter 1.4	
	1	1	Chapter 8.1	
II	2	1	Chapter 8.2	
	1	1	Chapter 9.1	
III	2	1	Chapter 9.2	
IV	1	1	Chapter 9.3	
1 V	2	1	Chapter 9.4	

Suggested Readings

- 1. Seymour Lipschutz; Marc Lars Lipson; Schaum's Outline of Theory and Problems of Discrete Mathematics; Third edition; Mc. GRAW-HILL
- 2. V K Balakrishnan; Introductory Discrete Mathematics; Dover Publications, INC

Assessment Rubrics

]	Evaluation Type	Marks
End Ser	mester Evaluation	50
Continu	ous Evaluation	25
a)	Test Paper *	10
b)	Assignment	10
c)	Seminar, Viva-Voce	5
Total		75

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Calculators shall not be permitted.

KU2MDCCMT102: VECTOR ALGEBRA

Semester	Course Type	Course Level	Course Code		Credits	Total Hours
2	MDC	100	KU2MDCCMT102		3	45
Learning	Approach (Hou	Marks Distribution			Dunation of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
3		1	25	50	75	1.5

Course Description

This course aims to introduce the concepts of vectors, vector operations, dot product and cross product of two vectors, scalar and vector triple product and applications.

Course Prerequisite

Basic knowledge in Rectangular Cartesian System.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the basics of vectors and vector operations	Understand
2	Comprehend the right- and left-handed systems	Understand
3	Understand dot product, cross product and box product of vectors	Understand
4	Apply the known concepts to illustrate some situations	Understand, Apply
5	Understand miscellaneous applications	Understand, Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓						
CO 2						✓	
CO 3	√						
CO 4	✓						
CO 5	✓						
CO 6	✓						
CO 7	✓						

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS		
		a) Fundamental concepts and definitions			
ī		b) Vector operations			
1		c) Right-handed and Left handed system	11		
		d) Linear dependence of vectors			
TT		a) Dot product of two vectors	11		
II		b) Projection of a vector on an axis	— 11		
		c) Cross product of two vectors			
III		d) Scalar triple product	— 11		
	Miscell	aneous applications			
		a) Vector triple product			
IV		b) Vector and Cartesian equation of lines and planes in space	12		
		c)Example			
	d) Miscellaneous applications				

Essential Readings:

1. DemetriosP.Kanoussis; Vector Algebra for Engineers and Scientists; Amazone Digital Services.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Chapters 1,2,3,4	
II	1	1	Chapters 5,6	
III	1	1	Chapters 7,8,	
IV	1	1	Chapter 9,10,11	

Suggested Readings:

- 1. James Stewart; Calculus: Early Transcendentals; 9th edition; Cengage learning; 2021.
- 2. G. B. Thomas Jr, M. D. Weir and Joel R. Hass; Thomas' Calculus; 12th edition; Pearson; 2009.

3. H.Anton, I. Bivens, S. Davis; Calculus; 10th edition; Wiley.

1. Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	50
	us Evaluation	25
	Test Paper *	10
b)	Assignment	10
<i>'</i>	Seminar, Viva-Voce	5
-	Total	75

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

SEMESTER - 3

KU3MDCCMT201: FOUNDATIONS OF HIGHER MATHEMATICS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	MDC	200	KU3MDCCMT201	3	45

Learning	Marks Distribution			Duration of			
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
3		0	25	50	75	1.5	

Course Description

This course is to introduce Divisibility property and binary Operations.

Course Prerequisite

- 1. Basic number theoretic concepts.
- 2. Sets, relations, Functions.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of Divisibility.	Understand
2	Apply the concept of Division Algorithm to find G.C.D.	Understand, Apply
3	Understand the concept of Binary Operation.	Understand
4	Understand the concept of Isomorphism.	Understand

Mapping of Course Outcomes to PSOs

		PSO 2			
CO 1	√	√	 √	√	
CO 2				√	
CO 3	√				
CO 4	√				
CO 5	√				
CO 6	✓				
CO 7	√				

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	Divisibility	Theory in Integers	
		The Division Algorithm	12
1	1	The Greatest Common Divisor	
II	1	The Euclidean Algorithm	11
	1	The Diophantine Equation $ax + by = c$.	
III	2	The Fundamental Theorem of Arithmetic.	11
	Binary Operations		
IV	1	a) Binary Operationsb) Isomorphic Binary Operations	11

Essential Readings:

- 1. David M. Burton; Elementary Number Theory (Seventh Edition); Mc Graw Hill; 2010.
- 2. John B Fraleigh; A first Course in Abstract Algebra (Seventh Edition); Pearson Education India.

Reference Distribution:

Module	Unit	Reference No.	Sections	Remarks
I	1	1	Sections 2.2, 2.3, 2.4	
II	1	1	Section 2.4	
III	1	1	Sections 2.5, 3.1.	
IV	1	2	Sections 1.2,1.3	

Suggested Readings:

- 1. C. Y Hsuing; Elementary Theory of Numbers; Allied Publishers; 1995.
- 2. G.E. Andrews; Number Theory; Dover publications Inc.; 1995.
- 3. I. N. Herstein; Abstract Algebra(Third Edition); Wiley student edition.
- 4. Joseph A Gallian; Contemporary Abstract Algebra (Seventh Edition); Brooks/Cole Cengage Learning.

Assessment Rubrics:

	valuation Type	Marks		
	ester Evaluation	50		
Continuo	us Evaluation	25		
a)	Test Paper *	10		
b)	Assignment	10		
c)	Seminar, Viva-Voce	5		
	Total	75		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

VALUE ADDED COURSES

SEMESTER - 3

KU3VACCMT201: PROBABILTY THEORY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
3	VAC	200	KU3VACCMT201	3	45

Learning	Approach (Hou	ırs/ Week)	Mar	Duration of				
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)		
3		1	25	50	75	1.5		

Course Description

This course is to introduce Sampling, Null Hypothesis, Level of Significance, critical region, Standard Error and Chi-square distribution and also testing Hypothesis using Normal and Chi-square distribution

Course Prerequisite

Set Theory, Integration, Probability/Statistics course of level 100-199.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand Sampling and Types of Sampling	Understand
2	Understand Null Hypothesis	Understand
3	Understand Error in statistic	Understand
4	Understand Critical region	Understand
5	Understand level of significance	Understand
6	Testing of Hypothesis	Understand, Apply

Mapping of Course Outcomes to PSOs

p.		PSO 2			
CO 1	✓		√		
CO 2	/		√		
CO 3	✓		√		
CO 4	/		√		
CO 5	✓		✓		
CO 6	✓		√		
CO 7	✓		√		

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
Ι	Samp	ling and Testing of Hypothesis for large samples	11

	1	a) Sampling and Types of Sampling	
	2	a) Testing of Hypothesis for Large samples	
		b)Test for Single Proportion	
	Unbi	ased estimate, Standard Error and Testing of Mean	
II	1	a) Unbiased estimate for population Mean	11
		b) Unbiased estimate for population Variance	
		a)Standard Error of Sample Mean	
III	1	b)Test of Significance for Mean	11
		c)Test of Significance for difference of Means	•••
	1	of significance for Difference of Standard deviation, Square Distribution	
TX 7	1	a) Test of significance for Difference of Standard deviation	10
IV	2	a) Chi-Square Distribution	12
		b) Applications of Chi-Square Distribution	
		c) Yate's Correction	-

Essential Readings:

1. S C Gupta & V K Kapoor; Fundamentals of Mathematical Statistics; (10th revised edition);S Chand & Sons

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
Т	1	1	Sections 12.1, 12.2	
•	2	1	Sections 12.3 to 12.9	Section 12.9.1 omitted
II	1	1	Section 12.10, 12.11	
III	1	1	Sections 12.12 to 12.14	
	1	1	sections 12.15	
III	2	1	sections 13.1, 13.2, 13.3, 13.7 and 13.8	Sections 13.3.3, 13.3.4 are omitted

Suggested Readings:

- 1. Dennis Wackerly, William Mendenhall III and Richard S; Mathematical Statistics with Application (Seventh Edition); Duxbury Press;2007.
- 2. Robert. V. Hogg and Allen T. Craig; Introduction to Mathematical Statistics (Fifth Edition); Higher education press; 1978.
- 3. G Shankar Rao; Probability and Statistics for Science and Engineering; University press; 2011.
- 4. Maria Dolores Ugarte, Ana F. Militino, Alan T. Amholt; Probability and Statistics with R; CRC Press, A Chapman & Hall Book.
- 5. Frank S Emmert-Streib, Salissou Moutari, Matthias Dehmer; Mathematical Foundations of Data Science Using R; De Gruyter (2022).
- 6. Meatloaf, Norman S; Probability and Statistics for Data Science-math+R+data; CRC press(2020).

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	50
Continuo	ous Evaluation	25
1	Test Paper *	10
b)	Assignment	10
c)	Seminar, Viva-Voce	5
<u>i</u>	Total	75

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

SEMESTER - 4

KU4VACCMT201: CODING THEORY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	VAC	200	KU4VACCMT201	3	45

Learning Approach (Hours/ Week)	Marks Distribution	Duration of
---------------------------------	--------------------	-------------

Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
3			25	50	75	1.5

Course Description:

This course discuss construction of efficient codes using algebraic techniques .Also discuss the theory of linear codes, their encoding and decoding techniques. Cyclic codes are special types of linear codes.

Course Pre-requisite:

Basics of Linear Algebra, Abstract algebra and number theory.

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	To understand error detection in coding theory	Understand
2	Able to construct linear codes	Analyse Apply
3	Able to design cyclic codes	Understand Apply, Create
4	Compare different types of linear and cyclic codes.	Analyze, Apply

Mapping of Course Outcomes to PSOs

	PSO 1			PSO 4		
CO 1	✓	√				
CO 2		√	√			
CO 3		√	√			√
CO 4	/	√	√			
CO 5						
CO 6						
CO 7	✓			√	√	

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
I	Introdu	ection,Error detection, correction and decoding	11

	1	a) Communication channels	
		b) Maximum likelihood decoding	
		c) Hamming distance	
		d) Minimum distance decoding	
		e) Distance of a code	
		f) Basics of finite fields and vector space.	
	Linear C	Codes	
	1	a) Vector spaces over finite fields	11
TT		b) Linear codes	
П		c) Hamming Weight	
	1	a) Bases for linear codes	
111		b) Generator matrix and parity check matrix	11
		c) Equivalence of linear codes	
	Cyclic C	odes	
	1	a) Definitions	
IV		b) Generator polynomials	12
		c) Generator and parity check matrices	
		d) Decoding of cyclic codes	

Essential reading:

1. San Ling and Chaoping Xing; Coding Theory - A first Course; Cambridge University Press;1983.

Reference Distribution:

Mod ule	Unit	Reference No.	Sections	Remarks
I	1	1	Chapter 1, Chapter 2, Sections 3.1- 3.3	
II	1 1		Sections 4.1- 4.4	

III	1	1	Sections 4.5- 4.7	
IV	1	1	Sections 7.1-7.4	

Suggested reading:

- 1. R.Lidl and H. Neiderreiter, Introduction to Finite Fields and their Applications, Cambridge University Press,1983
- 2. F.J Mac Williams and N.J.A Sloane, The theory of error correcting codes, North Holland, Amsterdam, 1998
- 3. Shu Lin and Daniel J. Costello, Error Control Coding Fundamentals and Applications, Pearson Education India,2011

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	50
Continuo	us Evaluation	25
a)	Test Paper *	10
b)	Assignment	10
c)	Seminar, Viva-Voce	5
	Total	75

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (ie up to fx99) shall be permitted.

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	VAC	200	KU4VACCMT202	3	45

Learnin	g Approach (Ho	Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
3		1	25	50	75	1.5

Course Description

This course is to introduce Complex Numbers and to understand the nature of roots of an equation.

Course Prerequisite

1. Complex numbers

2. Solving equation.

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of Complex Numbers.	Understand
2	Understand the nature of roots of an equation	Understand
3	Understand the relationship between roots and coefficients of equations	Understand
4	Understand how to find the roots of equations	Understand

Mapping of Course Outcomes to PSOs

				PSO 5		
CO 1	√	√	√		√	
CO 2					√	
CO 3	√					
CO 4	√					
CO 5	√					
CO 6	√					
CO 7	✓					

COURSE CONTENTS

• Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
I	1	Complex Numbers and their Geometric Representation. Polar Form of Complex Numbers. Powers, Roots.	11
II	1	 a) Basic Concepts b) Relation between roots and coefficients c) Symmetric Functions of roots d) Sum of the powers of roots Newton's Theorem on Sum of the powers of roots, 	11
III	1	a) Transformations of equationsb) Reciprocal equationsc) Descartes rule of signs	11
IV	1	a) Multiple Rootsb) Sturm's theoremc) Cardon's Method	12

Essential Readings:

- 1: Erwin Kreyszig; Advanced Engineering Mathematics (Tenth edition); John Wiley; 2011.
- 2: K. ManicavachagomPillay, T. Natarajan and K. S. Ganapathy; Algebra; SV Publications.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections 13.1,13.2.	
II	1	2	Sections 6.1-6.14	
III	1	2	Sections 6.15,6.16,6.21, 6.24	
IV	1	2	6.26,6.27,6.34	

Suggested Readings

- 1. S.S. Sastry; Engineering Mathematics, Vol 2 (4th edition); PHI.
- 2. J.B. Conway; Functions of One Complex Varible (2nd edition); Springer.
- 3. M.D.Raisinghnia, R.SAggarwal; Algebra;
- 4. K. H. Rosen; Discrete Mathematics and its Applications (Sixth edition); Tata McGraw Hill publishing company; New Delhi.

Assessment Rubrics:

	valuation Type	Marks		
End Sem	ester Evaluation	50		
	us Evaluation	25		
a)	Test Paper *	10		
	Assignment	10		
	Seminar, Viva-Voce	5		
Total		75		

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**}Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

KU4VACCMT203: LINEAR PROGRAMMING

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	VAC	200	KU4VACCMT203	3	45

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	ESE (Hours)
3			25	50	75	1.5

Course Description

This course is to introduce the notion of Linear Programming problem, solution of Linear Programming problems by Graphical method and Simplex methods, the Transportation models and its solutions.

Course Prerequisite

Elementary Linear Algebra

Course Outcomes

CO No.	Expected Outcome	Learning Domains
1	Understand a Linear Programming Problem	Understand
2	Formulate A Linear Programming Problem	Understand

3	Apply Graphical method to solve an LPP	Apply
4	Understand Simplex Method	Understand
5	Apply Simplex Algorithm to solve an LPP	Apply
6	Understand the Transportation model	Understand
7	Apply different methods to find an initial solution for Transportation Problem	Apply
8	Understand the Assignment model	Understand
9	Apply Hungarian method to find solution of an Assignment Problem	Understand, Apply

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓						
CO 2	√						
CO 3			✓				√
CO 4	✓						
CO 5			✓			✓	
CO 6	✓						
CO 7	✓						✓
CO 8	✓						
CO 9	✓		✓				

COURSE CONTENTS

Contents for Classroom Transaction

MODULE UNIT	DESCRIPTION	HOURS	

	Intr	oduction to Linear Programming	
I	_	Introduction ,Structure of linear programming	
	1	Advantages ,limitations and applications of LPP	11
		General mathematical Model of LPP	
	2	Graphical Solution of LPP	
	The	Simplex Algorithm	
		Introduction	
II	1	Standard Form of an LP problem	11
		Simplex Algorithm (Maximization case)	
		Transportation Problem	
		Introduction	
	1	Mathematical Model of Transportation	11
111		Transportation Algorithm	
		Methods of finding initial solution	
	1	Assignment Problem	
IV		Introduction12	12
		Mathematical model of Assignment Problem	
		Hungarian method for solving Assignment Problem	

Essential Readings:

1. Operations Research, Theory and Applications, J K Sharma,6th edition, Trinity

Reference Distribution:

Modu	e Unit	Reference No.	Sections	Remarks
1	1	1	Section 2.1, 2.2, 2.3, 2.4, 2.5, 2.6.	Sections 3.3.5 is omitted
	2	1	Section 3.1,3.2,3.3	

II	1	1	Section 4.1,4.2,4.3	
III	1	1	Sections 9.1,9.2,9.3,9.4	
IV	1	1	Section 10.1, 10.2,10.3.1	

Suggested Readings:

- 1. H.A. Thaha; Operations Research An Introduction (10th edition); Pearson
- 2. G. Hadley; Linear Programming; Oxford & IBH Publishing Company.
- 3. Richard J. Boucherie, Aleida Braaksma, Henk Tijms; Operation Research Introduction to Model and Methods; World Scientific.
- 4. G. Srinivasan; Operations Research Principles and Applications (Third edition); PHI
- 5. Michael W. Carter, Camille C Price; Operation Research A Practical Introduction; CRC Press

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	50
Continuous Evaluation		25
a)	Test Paper *	10
	Assignment	10
	Seminar, Viva-Voce	5
	Total	75

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (that is, upto fx 99) shall be permitted.

SKILL ENHANCEMENT COURSES

SEMESTER - 4
KU4SECCMT201: LINEAR PROGRAMMING PROBLEMS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	SEC	200	KU4SECCMT201	3	45

Learning	Approach (Hou	rs/ Week)	Mar	Duration of			
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
3			25	50	75	1.5	

Course Description:

This course is to introduce the mathematical modeling of industrial problems using the concept of Linear Programming, and different methods to solve them, Assignment problem.

Course Prerequisite:

Elementary Linear Algebra

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Understand a Linear Programming Problem	Understand
2	Formulate a Linear Programming Problem	Understand
3	Apply Graphical method to solve an LPP	Apply
4	Understand Simplex Method, Big M method and Two phase method algorithms	Understand
5	Apply Simplex Algorithm, Big M Method and Two Phase methods to solve an LPP	Apply
6	Understand the various parameters that determine the basic Feasible solution of an LPP	Understand
7	Understand Dual of a primal	Understand

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	√						
CO 2	✓						
CO 3			✓				✓
CO 4	✓						
CO 5			✓			✓	
CO 6	✓						
CO 7	✓						
CO 8	✓						

	CO 9	✓	√	′		
ı						

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS					
	Intro	duction to Linear Programming						
l	1 What is a Linear Programming Problem?							
	2	The Graphical Solution of two variable Linear Programming problems						
	3	3 Special cases						
	The S	Simplex Algorithm						
	1	a) How to convert an LP to standard form						
II		a) Preview of the Simplex Algorithm						
		b) Direction of unboundedness	11					
	2	c) Why does an LP have an optimal bfs						
		d) Simplex Algorithm						
		e) Use Simplex Algorithm to solve minimization problems						
	Spec	ial cases in Simplex method						
Ш		a) Alternative Optimal solutions						
	1	b) Unbounded LPs	11					
		c) Degeneracy and the convergence of the Simplex Algorithm						
	The I	Big M Method and The Two- Phase Method and Duality						
	1	a) The Big M Method						
IV		b) The Two- Phase Simplex Method	12					
	c) Unrestricted-in-Sign							
	2 Finding the dual of an LP							

Essential Readings:

1. Wayne L. Winston; Operations Research; Applications and Algorithms (fourth edition); Thomson(Brooks/Cole).

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
	1	1	Section 3.1	
I	2	1	Section 3.2	
	3	1	Section 3.3	
II	1	1	Section 4.1	
••	2	1	Sections 4.2,4.3,4.4,4.5,4.6	
III	1	1	Sections 4.7,4.8,4.11	
IV	1	1	Section 4.12,4.13,4.14	
IV	2	1	Sections 6.5	

Suggested Readings:

- 1. H.A. Thaha; Operations Research An Introduction (10th edition); Pearson
- 2. J.K. Sharma; Operations Research Theory and Applications; McMillan.
- 3. G. Hadley; Linear Programming; Oxford & IBH Publishing Company.
- 4. Richard J. Boucherie, AleidaBraaksma, HenkTijms; Operation Research Introduction to Model and Methods; World Scientific.
- 5. G. Srinivasan; Operations Research Principles and Applications (Third edition); PHI
- 6. Michael W. Carter, Camille C Price; Operation Research A Practical Introduction, CRC Press.

Assessment Rubrics:

Evaluation Type	Marks

	ester Evaluation	50
	us Evaluation	25
	Test Paper *	10
b)	Assignment	10
	Seminar, Viva-Voce	5
	Total	75

SEMESTER - 5

KU5SECCMT301: MATHEMATICAL TRANSFORMS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	SEC	300	KU5SECCMT301	3	45

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

^{**} Use of Scientific Calculators below 100 functions (that is, uptofx 99) shall be permitted.

Learning	Approach (Hou	rs/ Week)	Duration of				
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
3			25	50	75	1.5	

Course Description

This course aims to introduce the Fourier transform, Hankel Transform and, Z transform, its operational properties and applications.

Course Prerequisite

Integral Calculus, Fourier series

Course Outcomes

Expected Outcome	Learning Domains
Identify Fourier Integrals	Knowledge
Understand Fourier Cosine and Sine Transforms	Understand
Apply Fourier transforms techniques in signal analysis	Apply
Understand Hankel transform and its properties	Understand
Understand Z its inverse transforms and properties	Understand
Solve discrete-time signal problems using Z transforms	Apply
	Identify Fourier Integrals Understand Fourier Cosine and Sine Transforms Apply Fourier transforms techniques in signal analysis Understand Hankel transform and its properties Understand Z its inverse transforms and properties

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	✓		✓			✓	
CO 2	✓				✓	✓	

CO 3	✓	✓			
CO 4	√		√		
CO 5	✓	√		✓	
CO 6	✓				✓

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
I	1	FOURIER INTEGRALAND TRANSFORMS	11
		a) Fourier Integrals	
TT	1	b) Fourier Cosine and Sine Transforms	
II		 c) Fourier Transform (exclude Discrete and Fast Fourier Transforms) 	11
	1	HANKEL TRANSFORMS	
III		a) Introduction	11
		b) The Hankel transform and Examples	
		c) Operational Properties of Hankel Transform	4
	1	Z TRANSFORMS	
		a) Definition of the Z transform and Examples	
IV		b) Basic Operational Properties of Z transforms	12
		c) The inverse Z transform and Examples	
		d) Application of Z transforms to Finite Difference equations	

Essential Readings:

1. Erwin Kreyzig; Advanced Engineering Mathematics; 9th Edition; John Wiley; 2006.

2. Lokenath Debnath, Dambaru Bhatta; Integral Transform and Their Applications; Second Edition; Chapman & Hall/CRC 2007.

Reference Distribution:

Module	Unit	Essential ReadingNo.	Sections	Remarks
I	1	1	Section 11.7	
II	1	1	Sections 11.8, 11.9	
III	1	2	Section 7.1- 7.3	
IV	1	2	Sections 12.3- 12.6	

Suggested Readings:

- 1. Veerarajan T.; Transforms and Partial Differential Equations; 3rd Edition; Tata McGraw-Hill; New Delhi,2012.
- 2. Ramana B.V.; Higher Engineering Mathematics; 3rd Edition; Tata Mc-Graw Hill; New Delhi; 2010.
- 3. Larry C. Andrews, Bhimsen K. Shivamoggi; Integral Transforms for Engineers; SPIE Optical Engineering Press

.Assessment Rubrics:

E	valuation Type	Marks	
End Sem	ester Evaluation	50	
Continuo	ontinuous Evaluation 25		
a)	Test Paper *	10	
b)	Assignment	10	
c)	Seminar, Viva-Voce	15	
<u> </u>	Total	75	

^{*} A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

SEMESTER - 6

KU6SECCMT301: FUZZY SET THEORY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	SEC	300	KU6SECCMT301	3	45

Learning	Mar	Duration of						
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)		
3			25	50	75	1.5		

Course Description

This course aims to introduce the theory of fuzzy sets and discuss theoretical differences between fuzzy sets and classical sets.

Course Prerequisite

Set Theory

Course Outcomes

Expected Outcome	Learning Domains
Interpret fuzzy set theory and uncertainty concepts	Knowledge
Understand basic concepts of fuzzy sets	Understand
Identify properties of α cuts	Understand
Apply decomposition theorems for representing fuzzy sets	Apply
	Interpret fuzzy set theory and uncertainty concepts Understand basic concepts of fuzzy sets Identify properties of α cuts

5	Understand different operations on fuzzy sets.	Understand	

Mapping of Course Outcomes to PSOs

		PSO 2				
CO 1	√					
CO 2	√				√	
CO 3	√			√		
CO 4		√			√	
CO 5	✓		√			√

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
		FUZZY SETS	11
I	1	a) Fuzzy Sets-Basic Types	11
1	1	b) Fuzzy Sets-Basic Concepts	
		FUZYY SETS VERSUS CRISP SETS	
II	1	a) Additional Properties of alpha-Cuts	11
11		b) Representations of Fuzzy Sets	11
		c) Extension Principle for Fuzzy Sets	
		OPERATIONS ON FUZZY SETS	
III		a) Types of operations	11
	1	b) Fuzzy Complements	

		a) Fuzzy Intersections: t-Norms	
IV	1	b) Fuzzy Unions: t-Conorms	12

Essential Readings:

1. George J. Klir and B.O. Yuan; Fuzzy Sets and Fuzzy Logic - Theory and Applications; Prentice Hall; 1995.

Reference Distribution:

Module	Unit	Essential Reading No.	Sections	Remarks
I	1	1	Sections 1.3 – 1.4	
II	1	1	Section 2.1- 2.3	
III	1	1	Section 3.1-3.2	
IV	1	1	Sections 3.3- 3.4	

Suggested Readings:

- 4. H. J. Zimmerman; Fuzzy Set theory and its Applications; 4th Edition; Kluwer Academic Publishers; 2001.
- 5. Timothy J Ross; Fuzzy Logic with Engineering Applications; McGraw Hill International Editions.

.Assessment Rubrics:

Evaluation Type End Semester Evaluation Continuous Evaluation		Marks		
		50 25		
				a)
	Assignment	10		
c)	Seminar, Viva-Voce	5		
Total		75		

considered for internal mark.						

184

* A student has to appear for at least two written tests. Average mark of best two tests is to be