

(Abstract)

M.Sc Plant Science with Specialization in Ethnobotany Programme in the Department of Botany, Mananthavady Campus - Revised Scheme (All Semesters) & Syllabus (1st Semester Only) -Approved- Implemented w.e f 2023 admission- Orders Issued

ACADEMIC C SECTION

ACAD C/ACAD C3/26940/2023

Dated: 13.02.2024

Read:-1. U.O.No ACAD C/ ACAD C3/22373/2019 dated 12/09/2023

2. Circular No dated ACAD C/ ACAD C3/22373/2019 dated 12/09/2023

3. Email dated 23/12/2023 from the Course Coordinator, Dept of Botany, Mananthavady Campus

4. Minutes of the meeting of the Department Council dated 06/11/2023

5. U.O of even number dated 11/01/2024

6. Email dated 20/01/2024 from the Course Coordinator, Dept of Botany,

Mananthavady Campus

7. Orders of vice chancellor in file of even No. dtd.09.02.2024.

ORDER

1. The revised Regulations for Post Graduate Programmes under Choice Based Credit and Semester System in the University Teaching Departments/ Schools were implemented w.e.f 2023 admissions vide paper read 1 above.

2. As per paper read 2 above, Heads of all Teaching Departments were requested to submit the revised Syllabus in accordance with the approved Regulations along with a copy of the Department Council Minutes.

3. As per paper read 3 above, the Course Co-ordinator, Dept. of Botany, Mananthavady Campus

submitted the Scheme (All Semesters) and the Syllabus (1st Semester Only) of M. Sc Plant Science with Specialization in Ethnobotany Programme to be implemented in the University Teaching Department w. e. f 2023 admissions.

4. Department Council vide the paper read 4 above approved the aforementioned scheme and syllabus of M. Sc Plant Science with Specialization in Ethnobotany Programme to be implemented in the Dept. of Botany, Mananthavady Campus w.e.f.2023 admission.

5. As ordered by the Vice chancellor, a Committee was constituted vide paper read 5 above, to scrutinize/evaluate the Scheme & Syllabus of the aforementioned Programme and authorized the Course Coordinator to coordinate the Committee and convene online meetings to scrutinize/evaluate the syllabus and to submit the final Scheme & Syllabus of the Programme after incorporating the corrections / modifications suggested by the Committee along with the minutes of the Department Council approving the same.

6. As per paper read 6 above, the Course Co-ordinator, Dept. of Botany submitted the Scheme (All Semesters) and the Syllabus (1st Semester Only) of M. Sc Plant Science with Specialization in Ethnobotany Programme to be implemented in the University Teaching Department w. e. f 2023 admissions, approved by the department council held on 19.01.2024.

7. The Vice Chancellor, after considering the matter in detail and in exercise of the powers of the Academic Council conferred under section 11(1), Chapter III of Kannur University Act 1996,

approved the Scheme (All Semesters) & Syllabus (1st Semester Only) of M.Sc Plant Science with Specialization in Ethnobotany Programme and accorded sanction to implement the same in the Dept. of Botany, Mananthavady Campus w.e.f 2023 admissions, subject to report to the Academic Council. 8.The Scheme (All semesters) and Syllabus (1st Semester Only) of M.Sc Plant Science with Specialization in Ethnobotany Programme under CBCSS implemented in the Dept of Botany, Mananthavady Campus with effect from 2023 admission, is appended and uploaded in the University website (www.kannuruniversity.ac.in) 9. Orders are issued accordingly.

Sd/-

Narayanadas K DEPUTY REGISTRAR (ACAD) For REGISTRAR

To:

1. Course Coordinator, Dept of Botany, Mananthavady Campus 2. Convenor, Curriculum Committee

Copy To: 1.PS to VC/ PA to PVC/ PA to R

- 2. To Examination Branch (through PA to CE)
- 3. EP IV/ EXC I
- 4. Computer Programmer
- 5. Webmanager (to publish in the website)
- 6. SF/DF/FC

Forwarded / By Order SECTION OFFICER

KANNUR UNIVERSITY

M.Sc. PLANT SCIENCE

(Specialization in Ethnobotany)

SCHEME & SYLLABUS (Under Choice Based Credit & Semester System) 2023 admission onwards

DEPARTMENT OF BOTANY Kannur University Mananthavady campus

Post Graduate Programme in Plant Science

The M.Sc. Plant Science course is a comprehensive two-year program designed to provide students with an advanced understanding of plant science divided into four semesters, each focusing on different areas of Plant Science.

KANNUR UNIVERSITY

DEPARTMENT OF BOTANY

VISION

To be a world class department with excellence in teaching and research by providing scientific and technological contributions

MISSION

Promote quality education and innovative research in Plant Science.

PROGRAMME OUTCOMES

- PO 1 : Demonstrate and apply the fundamental knowledge of the basic principles of major fields of biology. Take informed actions after identifying the assumptions that frame our thinking and actions, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.
- **PO2** : Identify, formulate, conduct investigations, and find solutions to scientific problems based on in-depth knowledge of relevant domains.
- PO 3 : Speak, read, write and listen clearly in person and through electronic media in English/language of the discipline, and make meaning of the world by connecting people, ideas, books, media and technology.
- **PO 4** : Demonstrate empathetic social concern, and the ability to act with an informed awareness of environmental issues. Communicate scientific information in a clear and concise manner both orally and in writing
- PO 5 : Apply knowledge to solve the issues related to plant sciences with the help of computer technology. Recognize different value systems including your own, understand the moral dimensions of issues, and accept responsibility for them.
- **PO 6** : Acquire the ability to engage in independent and life-long learning in the broadest context socio- technological changes.
- **PO 7** : Apply the knowledge to develop the sustainable and eco-friendly technology in Industrial Botany.

PROGRAMME SPECIFIC OUTCOMES

- **PSO 1 :** A student completing the course can understand different specializations of Botany such as systematics, evolution, ecology, developmental biology, physiology, biochemistry, plant interactions with microbes and insects, morphology, anatomy, reproduction, Genetics and molecular biology of various life-forms.
- **PSO 2** : The students gets trained in various analytical techniques of plant biology, use of plants as industrial resources or as a human livelihood support system and is well versed with the use of transgenic technologies for basic and applied research in plants.
- **PSO 3** : The student completing the course can identify various life forms of plants, design and execute experiments related to basic studies on evolution, ecology, developmental biology, physiology, biochemistry, plant interactions with microbes and insects, morphology, anatomy, reproduction, genetics, microbiology, molecular biology, recombinant DNA technology, proteomics and transgenic technology.
- **PSO 4 :** The students will get hands-on training in the field of ethnobotany and conservation biology and unique subjects like wetland ecology, landscape ecology etc. Students are also familiarized with the use of bioinformatics tools and databases for the identification of lead molecules for drugs and also to apply statistical tools on biological data.
- **PSO 5** : The student completing the course will be capable to execute short research projects incorporating various tools and techniques in any of the basic specializations of Plant Sciences, in addition to being specialised in ethnobotany and conservation biology
- **PSO 6 :** The program will equip students with research skills required for independent study and original research in plant science. They will learn to conduct literature reviews, identify research gaps, formulate research questions, and develop research plans to explore and contribute to the field.

DURATION: 2 Years (4 semesters)

INTAKE: 13 Nos.

ELIGIBILITIES:

Any B.Sc degree equivalent to B.Sc Botany/Plant Science with 50% marks.

ADMISSION:

• The selection of the candidate is based on Admission test. The admission test will cover Plant Science at the undergraduate level.

COURSE DETAILS:

A student must register for the required number of courses at the beginning of each semester. No students shall register for more than 24 credits and less than 16 credits per semester.

A total of 80 credits shall be the minimum for successful completion of the course in which a minimum of 56 credits for core course and electives and 8 credit s from outside are mandatory. Those who secure only minimum credit for core/ elective subjects has to supplement the deficiency for obtaining the minimum total credits required for successful completion of the program from the other divisions.

EVALUATION:

The faculty member who teaches the course shall do evaluation of the students for each course on the basis of Continuous Evaluation and End Semester Examination shall be evaluated by External Examiners. The proportion of the distribution of marks among the continuous evaluation and end semester examination shall be **40:60**.

Continuous Evaluation includes assignments, seminars, and written examination for each course. Weightage to the components of continuous evaluation shall be given for all theory papers of the course as follows:

	Practical			
Components of CE	Minimum Number	Percentage	Components	Percentage
Test paper	2	40 %	Practical Test	80 %
Assignments	1	20 %	Record	20 %
Seminar, Viva, Presentation, Discussion and Debate	1	40 %	-	-

GRADE POINTS

A 7-point direct grading system is used for evaluation of the performance of each answer in an examination. Grade points corresponding to each is given below.

Letter Grade	Grade Points (P)
O (outstanding)	6
A+ (Excellent)	5
A (Very good)	4
B+ (Good)	3
B (Average)	2
C (Satisfactory)	1
F (Poor/ Not attempted)	0

Then the Weighted Grade Point Average (WGPA) is computed as follows

$(WGPA) = \Sigma (Pi \times Wi) / \Sigma (Wi)$

Where Pi is the grade point awarded to ith answer and Wi is the weightage assigned to that question. Σ (Wi) indicate the total weightage of the examination.

The weighted grade point average of Continuous Evaluation (P_{CE}) is computed as follows.

$$P_{CE} = (P1 \times W1 + P2 \times W2 + P3 \times W3 + ...) / (W1 + W2 + W3 +)$$

Where Pl, P2, P3 etc. are the grade points of different components and W1, W2, W3 etc. are the weightages of the components. If the candidate is absent in any of the components. '0' point should be awarded to that component and included in the computation.

The weighted grade point average of a course (G) (scaling-up to maximum grade point 10) is computed as given below.

$G = (P_{CE} \times 40 + P_{ESE} \times 60) / 60$

Where P_{CE} is the WGPA of CE and P_{ESE} is the WGP.A of ESE. The grade points should be rounded off to two decimal places.

Test Paper: For each course there shall be at least two class tests during a semester.

Assignments: Each student shall be required to do one assignment for each course.

Seminar: Students are required to present a seminar on a selected topic in each paper. The

evaluation of the seminar shall be done by the concerned teacher handling the course.

Attendance: Minimum attendance required for each paper shall be 75% of the total number of classes conducted for that semester. Those who secured the minimum requirement of attendance only be allowed to register/appear for End Semester Examination.

Condonation of attendance to a maximum of 10 days in a semester subject to a maximum of two times during the whole period of the PG program may be granted by the university as per university rules.

Conduct of Examination:

The vice chancellor will approve the panel of examiners submitted by the Head of the Department. All the teachers of the Department will be the members of the Board of examiners with Head of the Department as the Chairperson. There shall be a minimum of two external examiners. The panel approved by the Vice-Chancellor will be entrusted with the setting of question papers, conduct and evaluation of examination.

Research Project:

The students have to complete a project during IV Semester under the guidance of a faculty in the department or with other institutions.

GRADING

An alphabetical Grading System shall be adopted for the assessment of a student's performance in a Course. The following tables gives the WGPA and corresponding letter grade in course.

WGPA	Letter Grade
9.5 and above	0
8.5 and above but less than 9.5	A+
7.5 and above but less than 8.5	A
6.5 and above but less than 7.5	B+
5.5 and above but less than 6.5	В
4.5 and above but less than 5.5	С
4.0 and above but less than 4.5	D
Less than 4.0	F

Based on CGPA the overall letter grade of the student and the classification shall be in the following way

CGPA	Overall Letter Grade	Classification
9.5 and above	О	Outstanding
8.5 and above but less than 9.5	A+	Excellent

7.5 and above but less than 8.5	А	Very Good
6.5 and above but less than 7.5	B+	Good
5.5 and above but less than 6.5	В	Above Average
4.5 and above but less than 5.5	С	Average
4.0 and above but less than 4.5	D	Pass
Less than 4.0	F	Fail

SCHEME

	FIR	RST SE	MEST	ER			
Course		Cont	tact hrs	s./Week	Grade	e	
Code	Title of Paper	L	T/S	Р	ESE	CE	Credits
	Discipline Spe	ecific Co	ore Co	urses (DS	C)		
MSPSC 01DSC01	Biology of Archegoniate	3	1	-	60%	40%	3
MSPSC 01DSC02	Anatomy and Microtechnique	3	1	-	60%	40%	3
MSPSC 01DSC03	Genetics and Evolution	3	1	-	60%	40%	3
MSPSC 01DSC04	Mycology and Plant Pathology	3	1	-	60%	40%	3
MSPSC 01DSC05	PRACTICAL 1 Biology of Archegoniate, Anatomy of Angiosperms and Microtechnique	-	-	5	60%	40%	3
MSPSC 01DSC06	PRACTICAL 2 Genetics, Mycology and Plant Pathology	-	-	5	60%	40%	3
	Total	12	4	10	60%	40%	18
	Discipline Spec	cific Ele	ctive C	Courses (I	DSE)		
MSPSC 01DSE01	Methodology and Philosophy of Science	3	1	-	60%	40%	3
	Total		30		60%	40%	21

Total Credits: 27, Discipline Specific Core Courses (DSC): **15**, Discipline Specific Elective Course (DSE): **6**, Multidisciplinary Elective (MDC) to be obtained from other departments: **2**, Ability Enhancement Course (AEC) to be obtained from other departments: **2**, Skill Enhancement Course to be obtained from other departments (SEC): **2**.

	SE	CON	D SEM	ESTE	R		
Course	Title of Paper		Contac nrs./We		Grad	Credits	
Code	The of Luper	L	T/S	Р	ESE	CE	Cicuits
	Discipline	Speci	fic Core	e Cour	rses (DSC)		
MSPSC 02DSC07	Taxonomy and Advanced Plant Systematics.	3	1	-	60%	40%	3
MSPSC 02DSC08	Cell and Molecular Biology	3	1	-	60%	40%	3
MSPSC 02DSC09	Plant Physiology and Biochemistry	3	1	-	60%	40%	3
MSPSC 02DSC010	Practical III Taxonomy and Advanced Plant Systematics.	-	-	5	60%	40%	3
MSPSC 02DSC011	Practical IV Cell and Molecular Biology and Plant Physiology and Biochemistry	-	-	5	60%	40%	3
	Total	9	3	10	60%	40%	15
	Discipline Specific Elect	ive Co	ourses (DSE)	(Any 2 course	s to be chose	n)
MSPSC 02DSE02	Developmental Biology of Plants	3	1	-	60%	40%	3
MSPSC 02DSE03	Environmental Science	3	1	-	60%	40%	3
02DSE04	Seed Technology	3	1	-	60%	40%	3
	Total	6	2		60%	40%	6
	Multidisciplinary Elec	tive (I	MDC) a	ffered	for other de	epartments	
MSPSC 02MDC01	Ecology and Environment	2	1	_	60%	40%	2
MSPSC 02MDC02	Philosophy of Science			_	0070	4070	
	Multidisciplinary Elective (MDC) To be	obtaiı	ned from oth	er departn	nents
		2	1	-	60%	40%	2

	Ability Enhancement Course (AEC) offered for other departments						
MSPSC 02AEC01	Organic Farming	2	1	_	60%	40%	2
MSPSC 02AEC02	Floriculture	2	I	-	0070	4070	2
	Ability Enhancement Course	e (AE	C) To b	e obta	ined from of	ther depart	ments
		2	1	-	60%	40%	2
	Skill Enhancement Co	ourse (SEC) o	ffered	for other de	epartments	
MSPSC 02SEC01	Mushroom Technology	2	1	-	60%	40%	2
	Skill Enhancement Course	(SEC) To be	obtair	ned from oth	er departn	nents
		2	1	-	60%	40%	2
Total			44		60%	40%	27
	* Value Added Course (VAC)						
MSPSC 02VAC01	Biology-Ethics and Philosophy	1	1	-	60%	40%	2

* Not to be added to the total credit of the program

Total Credits: 23. Discipline Specific Core Courses (DSC): **15**, Discipline Specific Elective Courses (DSE): **6**, Multidisciplinary Elective (MDC) to be obtained from other departments: **2**

	T	HIRD	SEMI	ESTER	1		
Course Code	Title of Paper		tact hrs.	/Week	Gra	nde	Credits
Coue		L	T/S	Р	ESE	CE	
	Discipline	Specif	fic Core	e Cours	es (DSC)		
MSPSC 03DSC12	Biotechnology and Nano Biology	3	1	-	60%	40%	3
MSPSC 03DSC13	Bioinformatics	3	1	-	60%	40%	3
MSPSC 03DSC14	Ethnobotany and Ethnopharmacology	3	1	-	60%	40%	3
MSPSC 03DSC15	Practical V Plant Biotechnology, Tissue Culture and Bioinformatics	-	-	5	60%	40%	3
MSPSC 03DSC16	Practical VI Ethnobotany and Ethnopharmacology	I	-	5	60%	40%	3
	Total	9	3	10	60%	40%	15
	Discipline Specific Elec	tive Co	urses (E	OSE) (Ar	ny 2 course to	be chosen)	
MSPSC 03DSE05	Methods in Plant Biology	3	1	-	60%	40%	3
MSPSC 03DSE06	Tissue culture and Plant Breeding	3	1	-	60%	40%	3
MSPSC 03DSE07	Microbiology						
	Total	6	2		60%	40%	6
	Multidisciplinary Ele	ective (]	MDC) o	ffered fo	or other dep	artments	
MSPSC03 MDC03	Agri-business	2	1	-	60%	40%	4
MSPSC	Environmental Auditing and Impact Assessment	2	1	-	60%	40%	4
03MDC04	Plant Tissue Culture and Conservation	2	1	-	60%	40%	4
MSPSC 03MDC05 MSPSC 03MDC06	Ethnobotany and Conservation	2	1	-	60%	40%	4
	Multidisciplinary Elective	e (MDC	c) to be o	obtained	l from other	departments	5

	2	1	-	60%	40%	2
Total	39		60%	40%	23	

Total credits: 16, Discipline Specific Core Courses (DSC): **3**, Discipline Specific Elective Courses (DSE): **3**, Project (P): **10**

		Four	th Sem	ester			
Course	Title of Dopor	Cont	act hrs./	Week	Grae	Credits	
Code	Title of Paper	L	T/S	Р	ESE	CE	Creans
	Discipline	Specif	ic Core	Cours	es (DSC)		
MSPSC04 DSC17	Conservation Biology	3	1	-	60%	40%	3
	Discipline Specific Elec	tive Cou	ırses (DS	SE) (Ar	y 1 course to	be chosen)	
MSPSC04 DSE08	Forest Botany	3	1	-	60%	40%	3
MSPSC04 DSE09	Land Scape Ecology	3	1	-	60%	40%	3
MSPSC04 DSE10	Wetland Ecology	3	1	-	60%	40%	3
	Project (P)						
MSPSC04 DSC18	Project Work	-	-	24	60%	40%	10
	Total		32		60%	40%	16
	Grand Total		145		60%	40%	87

FIRST SEMESTER M.Sc. PLANT SCIENCE PROGRAMME

CORE COURSE

Course Code& Title:	MSPSC01DSC01: BIOLOGY OF ARCHEGONIATAE	Module Outcome
Course Objectives:	 To study the various groups of Algae, Bryophytes, Pteridophytes, Gymnosperms To compare the similarities and differences in these groups 	1 The students will be able
Module1 16 hours	 Algae: Introduction-History of Phycology-General characteristics. 1. Classification of Algae according to van den Hoek et al. 1995. A brief account of the recent development in molecular phylogenetics and DNA barcoding of algae. 2. Diversity of algae and cyanobacteria. 3. Morphology: Range of thallus structure. 4. Reproduction and life history. 5. Collection, identification, preservation (including herbarium techniques) of algae. 6. General account of the structure, reproduction and relationships in the following group Chlorophyta; Xanthophyta; Phaeophyta, Bacillariophyta, Euglenophyta and Rhodophyta. Cyanophyta: structure of cell, akinete and heterocyst, pigments, chromatic adaptation, thallus organization and reproduction. 7. Applied aspects of algae and cyanobacteria: biodiesel, hydrogen, methane and ethanol production, carbon dioxide sequestration, industrial applications, food supplements, pharmaceutical industries, biofertilizers, bioremediation, biodegradation, algal blooms, commercial cultivation of algae, mass production and field application of cyanobacteria. 	1. The students will be able to collect, preserve, study and describe the general characteristics, classification and diversity of algae and cyanobacteria, their morphology, anatomy, reproduction and life history. 2. The students will also be able to evaluate the applied aspects of algae and cyanobacteria, such as biofuel production, carbon sequestration, industrial applications, food supplements, biofertilizers, bioremediation, algal blooms and commercial cultivation.

 0 E	
8. Fossil algae and cyanobacteria.	
References	
Chapman, V. J. 1941. An Introduction to the Study	
of Algae. Cambridge University Press.	
Chapman, V. J. & Chapman, D. J. 1973. The Algae.	
Macmillan.	
Desikachary, T. V. 1959. Cyanophyta. Indian	
Council of Agricultural Research.	
Fritsch, F. E. 1961. The Structure and Reproduction	
of Algae. Vol. 2. Cambridge University Press.	
Irvine, D. E. & D. M. John. 1984. Systematics of	
the Green Algae. Academic Press.	
Stevensen, J. et al. 1996. Algal Ecology. Freshwater	
benthic ecosystems. Academic Press.	
Krishnamurthy, V. 1998. Algae of India and	
Neighboring Countries. 1. Chlorophycota. Oxford	
& IBH publishing Co. Pvt. Ltd.	
Kumar, H. D. 1990. Introductory phycology. East	
West Press Pvt. Ltd.	
Prescott, G. W.1969. The Algae. A Review. Thomas	
Nelson and Sons Ltd	
Round, F. E. 1975. The Biology of Algae. Edward	
Arnold.	
Smith, G. M. 1978. Manual of Phycology. The	
Ronald Press Company.	
Trainor, F. R. 1978. Introductory Phycology. John	
Wiley and Sons.	
Van Den Hock, Mann, D.G. and Jahns, H.M. 1995.	
Algae: An Introduction to Phycology. Cambridge	
University Press.	
Venkataraman, G. S. 1972. Algal Biofertilizers and	
Rice Cultivation. Today and Tomorrow's	
publishers.	
Venkataraman, G. S., Goyal, S. K., Kaushik B. D.,	
and Roychaudhary, P. 1974. Algae form and	
function. Today and Tomorrow's printers.	
Vijayaraghavan, M. R. & Bhatia, B. 1997. Red	
Algae: Structure, Ultrastructure and Reproduction.	
APH Publishing Corporation.	

Module2	Bryophytes:	1. The students will
Module2 12 hours	 Bryophytes: 1. General habit, habitat, distribution, biogeography, growth forms and systems of classification of bryophytes. A brief account of the recent developments in molecular phylogenetics and DNA barcoding of bryophytes. 2.Origin of bryophytes 3. General account of the anatomy, reproduction and life history of Marchantiales, Jungermanniales, Polytrichales and Anthocerotales. 4. Applied bryology: Ecological uses, household uses, medicinal uses (herbal medicines, transgenic products), decorative bryophytes, aquarium bryophytes, heavy metal detection and clean up, erosion control, horticultural uses (soil conditioning, air layering, pot culture, container gardens and hanging baskets), bioindicators of pollution. 5.Fossil bryophytes: a general account. References Smith, A. J. E. (ed.). 1982. Bryophyte Ecology. Chapman & Hall. Shaw, A. J. & Goffinet, B. (eds.). 2000. Bryophyte Biology, Cambridge University Press. Glime, J. M. & Saxena, D.1991. Uses of Bryophytes. Today and Tomorrows Printers & Publishers. Schofield, W. B. 2001. Introduction to Bryology. The Blackburn Press.	 The students will be able to explain the general habit, habitat, distribution, anatomy, reproduction and classification of bryophytes. The students will be also able to assess the applied bryology of bryophytes, such as their ecological, household, medicinal, decorative, horticultural and bioindicator uses.
	Nair, M. C. et al. 2005. Bryophytes of Wayanad, Western Ghats. MNHS, Calicut	
Module 3 14 hours	Pteridophytes:1. Introduction to pteridophytes: generalcharacteristics, life cycle, classification. Briefaccount of the recent developments in molecularphylogenetics and DNA barcoding ofpteridophytes.2. Diversity of forms among pteridophytes:general morphology with special reference toSouth Indian species of Lycopodiales, Isoetales,Marattiales,Filicales(Gleicheniaceae,Adiantaceae, Cyatheaceae).3. Fossilpteridophytes:Psilophytales,Lepidodendrales,	 The students will be able to understand the general characteristics, morphology, anatomy, life cycle and classification of pteridophytes, The students will be able to understand the stelar evolution, heterospory and seed habit in pteridophytes.

	4. Habitat diversity of pteridophytes: epiphytes,	
	lithophytes, climbers, halophytes, saprophytes,	
	sciophytes, xerophytes, mesophytes, hydrophytes.	
	5. Stelar evolution: protostele, siphonostele,	
	solenostele, dictyostele and special stellar types; vessels in pteridophytes.	
	6. The fern gametophytes: pattern of	
	development, the morphology of mature	
	gametophytes.	
	7. Heterospory and evolution of seed habit.	
	8. Cytology: chromosome number and	
	morphology; polyploidy, the origin of polyploids,	
	apospory, apogamy, agamospory.	
	9. Applied pteridology: bio-fertilizer production	
	from Azolla: Azolla - Anabaena symbiosis;	
	Pteridophytes as weeds: Salvinia (aquatic) and	
	Pteridium (terrestrial); ornamental and medicinal	
	pteridophytes.	
	References	
	Bierhost, D. W. 1971. Morphology of Vascular Plants. Macmillan Co.	
	Dyer, A. C. 1979. The experimental Biology of Ferns. Academic Press.	
	Hameed, C. A., Rajesh, K. P. and	
	Madhusoodanan, P. V. 2003. Filmy Ferns of	
	South India. Penta Book Publishers &	
	Distributors.	
	Jermy, A. C. 1973 (Ed.). The Phylogeny and	
	Classification of Ferns. Academic Press.	
	Kramer, K. U. & Green, P. S. 1991. The families	
	and genera of Vascular Plants, Narosa.	
	Nampy, S. and Madhusoodanan, P. V. 1998. Fern	
	Flora of South India-Taxonomic Revision of	
	Polypodioid Ferns. Daya Publishing House.	
Module 4	Gymnosperms: 1. General characters,	The students will be
14 hours	classification. A brief account of the recent	able to outline the general characters,
	developments in molecular phylogenetics and DNA barcoding of sumpostrorms 2 Goological	classification,
	DNA barcoding of gymnosperms. 2. Geological horizon, distribution, general account including	morphology,
		anatomy,
	morphology, anatomy, phylogeny and interrelationship of the following orders a)	interrelationships,
	Pteridospermales:. b) Glossopteridales: c)	phylogeny and evolution of
	(indespendices. b) Glossopheridales. c)	gymnosperms and

Caytoniales : d) Cycadeoidales: e) Pentoxylales: f) Cycadales: g) Ginkgoales: h)Cordaitalesi) Coniferales: j) Taxales: k) Ephedrales: l) Welwitschiales: m) Gnetales: 3. Evolution of gymnosperms 4. Distribution of living and fossil gymnosperms in India. 5. Economic importance of gymnosperm	their transition angiosperms.	to
References Andrews Jr., H. N. 1961. Studies in Paleobotany. John Wiley, New York Arnold, C. A. 1953. Origin and relationships of the cycads. Phytomorphology 3: 51-65 Beck, C. B. 1985. Gymnosperm phylogeny: A commentary on the views of S.V. Meyen. Bot. Rev. 51: 273-294 Chamberlain, C. J. 1919. The Living Cycads. Chicago University Press, Chicago. Chemberlain, C. J. 1935. Gymnosperms: Structure and Evolution. Chicago University Press. Crepet, W. L. 1972. Investigations of North American cycadeoids: Pollination mechanisms in		
Cycadeoidea. Amer. J. Bot. 59: 1048-1056 Dallimore, W. & Jackson, A. B. 1966. A Handbook of Conifera. 4th edn, E. Arnold. Delevoryas, T. 1962. Morphology and evolution of fossil plants. New York. Favre-Duchartre, M. 1958. Ginkgo, an oviparous plant. Phytomorphology 8: 377-390 Freedman, W.E. 1992a. Double fertilization in non-flowering seed plants and its relevance to the origin of flowering plants. Intl. Rev. Cytol. 140: 319-355. Freedman, W. E. 992b. Evidence of a pre- angiosperm origin of endosperm: Implications for the evolution of flowering plants. Science 235: 336-339. Greguss, P. 1955. Identification of Living Gymnosperms based on Xylotomy. AkadKiado. Harris, T. M. 1951. The relationships of the Caytoniales. Phytomorphology 1: 29-39.		

Mehra, P. N. 1988. Indian Conifers: Gnetophytes
and Phylogeny of Gymnosperms. Pramodh P.
Kapur, Raj Bandhu Ind. Complex, New Delhi
Meyen, S. V. 1984. Basic features of
gymnosperm: Systematics and phylogeny as
evidenced by the fossil record. Bot. Rev. 50: 1-
111
Meyen, S. V. 1986. Gymnosperm systematics and
phylogeny: A reply to commentaries by CB Beck,
CN Miller, and GW Rothwell. Bot. Rev. 52: 300-
320
Millay, M. A., & Taylor, T. N. 1976. Evolutionary
trends in fossil gymnosperm pollen. Rev.
Palaeobot. Palynol. 21: 65-91.
Miller Jr., C.N. 1977. Mesozoic confers. Bot.
Rev. 43: 217-280
Pant, D. D. 1975. The classification of
gymnospermous plants. Palaebot. 6: 65-70
Pearson HHW (1929) Gnetales, Cambridge Univ.
Press, London
Madhulata, Sanwal. 1962. Morphology and
embryology of Gnetumgnemon L.
Phytomorphology 12: 243-264
Scott, D. H. 1909. Studies in Fossil Botany, 2nd
edn. Vol 1 A and C Black, London
Scott, D. H. 1923. Studies in Fossil Botany, Vol
2. A and C Black, London.
Sharma, B. D. 1994. Gymnosperms:
Morphology, Systematics, Reproductive Biology,
In: Johri, B.M. (ed.), Botany in India: History
and Progress. Vol. 2. Oxford & IBH, New Delhi.
pp 1-23.
Singh, H. 1978. Embryology of Gymnosperms.
Geb Borntrager, Berlin.
Stewart, W.N. 1981. The
Progymnospermospsida: The construction of a
concept. Can. J. Bot. 59: 1539-1542.
Stewart, W. N. 1983. Palaeobotany and the
evolution of plants. Cambridge University Press
crotation of plants. Californage Oniversity 11055

Course	MSPSC01DSC02	Module
Code& Title:	ANATOMY AND MICROTECHNIQUE	Outcome

ConstDo study iter itechniques associated with the study.Module IAnatomy: Introduction -Internal organisationThe module16 hrsof plant body -Methods of studying the Anatomy of the plant. Meristems: Shoot apical meristem and functional zones, axillary floral and inflorescence meristems — structural differentiation: tracheary element differentiation, secondary wall formation, vascular differentiation, development of aerenchyma, development of laticifers. Origin and structure of secondary plant body: vascular differentiation, advelopment of aerenchyma, development of laticifers. Origin and structure of secondary plant body: vascular differentiation, grigin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.The module aims to provide students with a thorough understanding of plant cells and tissues, the differentiation, structure and faction, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.The module aims to provide structure and fination, structure and structure of structure of structure of structure of structure of structure of structure of structure of structure and meristem, J. D. (1980) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghava V. (1990) Developmental Biology of Flowering Plants. Springer.Students will get intervelated concept of the structure and transfer cells, phloem loading and unloading. Secondary cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of qeiel meristem, developmental activitics, developmental activitics, developmental activitics, developmental activitics, developmental activitics, devel	Course	To study the internal organisation of plants and the	
Module IAnatomy: Introduction -Internal organisationThe module16 hrsof plant body -Methods of studying the Anatomy of the plant. Meristems: Shoot apical meristem and functional zones, axillary floral and inflorescence meristems – structural diversity of the vegetative meristems. Cell differentiation: tracheary element differentiation, secondary wall formation, vascular differentiation, development of acrenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.The module aims to provide students with a thorough understanding of the anatomy of the plant body, the development and structure of secondary plant body: vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.The module aims to provide students with a thoorugh understanding of the anatomy of the plant body, the development and function of vascular systems and the origin and structure of secondary plant biding Co. Raghavan V. (1990) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1989) Developmental Biology of Flowering Plants. Springer.Students will get interrelate concept anatomical adaptations during secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root ap			
16 hrsof plant body -Methods of studying the Anatomy of the plant. Meristems: Shoot apical meristem and functional zones, axillary floral and inflorescence meristems. Cell differentiation: tracheary element differentiation, secondary wall formation, vascular differentiation, development of aerenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.aims to provide students with a thorough understanding of the plant body, the development and therein, and tissues, the and tissues, such as xylem and phloem, and their role in water and nutrich transfor cells, phloen loading and grafting, cork- cambium in wound healing and grafting, cork- cambium in	•		
Anatomy of the plant. Meristems: Shoot apical meristem and functional zones, axillary floral and inflorescence meristems – structural diversity of the vegetative meristems. Cell differentiation: tracheary element differentiation, secondary wall formation, vascular differentiation, development of aerenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.students with a thorough understanding of the anatomy of the plant body, the development and structure and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.stucture and time to a function, structure and function of vascular systems and the origin and structure of secondary plant body with various types anatomical adaptations during secondary and v. (1990) Developmental Biology of Flowering Plants. Springer.Students with a thorough understanding differentiation, structure and function of vascular tissues; xylem - structure and mater movement. Phloem - structure and function for ot apical meristem, developmental activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, development at zones, longitudinal files of arise an explant and structure and meristem sementstudents with a thorousing the structure and meristem sementModule II 14 hrsStructure and function, for and structure and function, for ascular tissues, such as gevelopment at zones, longitudinal fil			
meristem and functional zones, axillary floral and inflorescence meristems – structural differentiation: tracheary element differentiation, secondary wall formation, vascular differentiation, development of aerenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaccae.thorough understanding of the plant body, the development and structure of secondary plant body: vascular cambium, origin and function, origin in and structure and primary thickening meristem in monocots, secondary growth in arborescent Liliaccae.thorough understanding of plant cells and tissues, the differentiation, structure and function of vascular systems and the origin and structure of secondary plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.thorough understanding of the structure and function of vascular transfer cells, phloem loading and unloading. Secondary cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, development al zones, longitudinal files of arule. O G encent and activities, development and dure to not and constitution of cambium, cambial activities, development al zones, longitudinal files of and the origin and development and dure to root and constitution of cambium, cambial activities, development al zones, longitudinal files of arule. O G encent and activities, development and dure to root and development and there to a materiation structure development and function, origin and scondary gr	16 hrs		1
and inflorescence meristems – structural diversity of the vegetative meristems. Cell differentiation, secondary wall formation, vascular differentiation, development of acrenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.understanding of the anatomy of the plant body, the development a and differentiation of plant cells and tissues, the differentiation, structure and function of vascular secondary growth in arborescent Liliaceae.understanding of the anatomy of the plant body, the development a and function, of plant cells and tissues, the differentiation, structure and function of vascular systems and the origin and structure of secondary plant Anatomy. Ath edition. ButterworthHeineman Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.Structure and function of vascular tissues: structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longinudinal files of arels. O. C. arcretter derme merent.Students will get interrelated concept of the structure and plants. To comprehend developmental activities, developmental activities, developmental activities, developmental activities, developmental activities, developmental activities, developmental activities, de			
diversity of the vegetative meristems. Cell differentiation: tracheary element differentiation, secondary wall formation, vascular differentiation, development of aerenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.of the plant body, the development of plant cells and tissues, the differentiation, structure and function of vascular and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.of the anatomy of the plant body, the development of differentiation of plant cells and tissues; the differentiation, structure and structure of secondary plant body with various types anatomical adaptations during scondary growthModule II 14 hrsStructure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of arels of the plant		-	e
differentiation:trachearyelementdifferentiation;secondary wall formation, vascular differentiation, development of aerenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.of the plant body, the development and differentiation of plant cells and tissues, the differentiation, structure and function of vascularReferences Beck, C. B. (2005) An Introduction to Plant Structure and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.Structure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium, cambial activity, cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of arels of the of cambium, carbial activities, developmental zones, longitudinal files of arels of the of cambium, carbial activities, developmental zones, longitudinal files of arels of the of cambium, carbial activities, developmental zones, longitudinal files of arels of the of cambium, activities, developmental zones, longitudinal files of arels of the of cambium, carbia activities, developmental zones, longitudinal files of arels of the structure and plants. To comprehend developmental zones, l			Ũ
differentiation, secondary wall formation, vascular differentiation, development of aerenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.body, the development and and differentiation of plant cells and tissues, the differentiation, structure and function of vascular secondary growth in arborescent Liliaceae.body, the development and tissues, the differentiation, structure and function of vascular systems and the origin and structure of secondary plant body with various types anatomical adaptations during secondary cambium: classification, origin and structure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of arela of colored apical meristem, developmental activities, developmental zones, longitudinal files of arela anomy, andbody, the development and time transport in plants.		diversity of the vegetative meristems. Cell	
vasculardifferentiation, development of aerenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.development and tifferentiation, of plant cells and tissues, the differentiation, structure and function of vascularReferencesReferencesBeck, C. B. (2005) An Introduction to Plant Structure and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.students will get intrelated concept of the structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of apical meristem, developmental activities, developmental zones, longitudinal files of arela of the lastification, origin and furction of cambium, cambial activities, developmental zones, longitudinal files of arela of the lastification, origin and for torigin and furction of cambium, cambial activities, developmental zones, longitudinal files of arela of the plants. To comprehend development and function. Root: developmental zones, longitudinal files of arela of the plants. To comprehend development and files of their role in water and nut		differentiation: tracheary element	of the plant
acrenchyma, development of laticifers. Origin and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.and differentiation of plant cells and tissues, the differentiation, structure and function of vascular secondary growth in arborescent Liliaceae.and differentiation of plant cells and tissues, the differentiation, structure and function of vascular systems and the origin and structure of secondary plant body with various types atatomical adaptations during secondary growthand itereview secondary plant body with various types atatomical adaptations during secondary growthModule II 14 hrsStructure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and function of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of cylem antom, ad developmental activities, developmental zones, longitudinal files of cylem antom, and constitution of cambium comparization of root apical meristem, developmental activities, developmental zones, longitudinal files of cylem and placem cylem and structure and constitution of cambium comparization of root apical meristem, developmental activities, developmental zones, longitudinal files of cylem and cylem and cylem and constitution of cambium comparization of root apical meristem, developmental activities, developmental zones, longitudinal files of cylem and cylem and cylematy and diversity of root and leanatomy, and diver		differentiation, secondary wall formation,	body, the
and structure of secondary plant body: vascular cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.differentiation of plant cells and tissues, the differentiation, structure and function of vascular systems and the origin and structure of secondary plant body with various types anatomical adaptationsReferences Beck, C. B. (2005) An Introduction to Plant Structure and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.during secondary growthModule II 14 hrsStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of or comprehend developmental zones, longitudinal files of or collare to anotre meristem expresentdifferentiation, of plant cells anatomica.		vascular differentiation, development of	development
Cambium formation-structure and formation of vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.of plant cells and tissues, the differentiation, structure and function of vascular systems and the origin and structure of structure of structure of structure of structure of structure of secondary plant edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.during secondary growthModule II 14 hrsStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of apical meristem, developmental activities, developmental zones, longitudinal files of or comprehend developmental activities, developmental zones, longitudinal files of or collar contard anatomy, and diversity of root and leaf anatomy, and		aerenchyma, development of laticifers. Origin	and
 vascular cambium, anomalous secondary growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae. References Beck, C. B. (2005) An Introduction to Plant Structure and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer. Module II Structure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activites, developmental zones, longitudinal files of avils Q. G. ensurent enter meristem correct 		and structure of secondary plant body: vascular	differentiation
growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.differentiation, structure and function of vascular systems and the origin and structure of secondary plant body with various types anatomical adaptations during secondary growthModule II 14 hrsStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of aratomy, and definition.differentiation, structure and function of vascular structure and during secondary cambium; classification, origin and constitution of cambium, cambial activities, developmental zones, longitudinal files of aratomy, and definition.differentiation, structure and function of vascular structure and function of vascular structure and function of vascular tissues.		cambium formation-structure and formation of	of plant cells
growth-classification, origin and function, primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.differentiation, structure and function of vascular systems and the origin and structure of secondary plant body with various types anatomical adaptations during secondary cambium; Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.differentiation, structure of secondary plant body with various types anatomical adaptations during secondary growthModule II 14 hrsStructure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium; classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of arel 0. C.differentiation, structure and function froot and function of root apical meristem, developmental activities, developmental zones, longitudinal files of arel 0. C.		vascular cambium, anomalous secondary	-
primary thickening meristem in monocots, secondary growth in arborescent Liliaceae.structure and function of vascular systems and the origin and structure of secondary plant body with various types anatomical adaptations during secondary growthReferences Beck, C. B. (2005) An Introduction to Plant Structure and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.structure and function of vascular tissues: turing secondary growthModule II 14 hrsStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of apical meristem, developmental activities, developmental zones, longitudinal files of anatomy, andstructure and function of vascular tissues, such as xylem and phloem, and their role in water and nutrient transport in plants. To comprehend development and diversity of root and leaf anatomy, and		•	
secondary growth in arborescent Liliaceae.function of vascularReferencessystems and the origin and structure and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.function of vascular systems and the origin and structure of secondary plant body with various types anatomical adaptationsModule IIStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of apical meristem, developmental activities, developmental zones, longitudinal files of anatom, and leaf anatomy, and			structure and
ReferencesvascularBeck, C. B. (2005) An Introduction to Plant Structure and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Curnmings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.vascular systems and the origin and structure of secondary plant body with various types anatomical adaptations during secondary growthModule II 14 hrsStructure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of apical meristem, developmental activities, developmental zones, longitudinal files of avels Q. C. expeared and meristem comparistvascular suscular tissues and meristem comparist anatomical anatomy, and			function of
Referencessystems and the origin and structure of secondary plantBeck, C. B. (2005) An Introduction to Plant Structure and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.body with various types anatomical adaptationsModule IIStructure and function of vascular tissues: a structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of apile O. C. anterent end meristem demonstratementsystems and the origin and structure and metrices and meristem demonstratement		2.6	
Beck, C. B. (2005) An Introduction to Plant Structure and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.origin and structure of secondary plant body with various types anatomical adaptations during secondary growthModule IIStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of apical meristem darm armiticme manemet.origin and structure of secondary plant body with various types anatomical adaptations during secondary growth		References	
and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.structure of secondary plant body with various types anatomical adaptationsModule IIStructure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of apical meristem, developmental activities, developmental zones, longitudinal files of ealls Q. C. acmeent and meristem and places. To comprehend development and meristem and places of anatomic and anatomic and anatomic and anatomic and anatomic and anatomic and anat			•
Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.secondary plant body with various types anatomical adaptationsModule II 14 hrsStructure and function of vascular tissues: structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of apical meristem, developmental activities, developmental zones, longitudinal files of active of the anatomy, and			U U
edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.body with various types anatomical adaptationsModule II 14 hrsStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of apical meristem, developmental activities, developmental zones, longitudinal files of anatomical an			
Fahn, A. (1990) Plant Anatomy. 4th edition. ButterworthHeinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.various types anatomical adaptationsModule IIStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of apila O C compent and arm muritam compartvarious types various types anatomical adaptationsFor the structure and function of vascular tissues: tissues, such as xylem and phloem, and their role in development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of apila O C compent and arm muritam compartthe edition. various types anatomical <br< th=""><th></th><th></th><th>• •</th></br<>			• •
Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.anatomical adaptationsModule II 14 hrsStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of arells O. C. accent and are meristem coreantStudents will get interrelated concept of the structure and function of vascular tissues, such as xylem and phloem, and their role in water and nutrient transport in plants. To comprehend developmental zones, longitudinal files of arells O. C. accent and are meristem coreant		•	•
Madsell, J. D. (1966) Flait Anatomy. The Delignmin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.adaptations during secondary growthModule IIStructure and function of vascular tissues: xylem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium, origin and function. Root: developmental zones, longitudinal files of acills O. C. accent and metabolite files of acills O. C. accent and metabolite files of acills O. C. accent and metabolite files of acills O. C. accent and metabolities and metabolities, developmental zones, longitudinal files of acills O. C. accent and metabolite files of acills O. C. accent and metabolities, developmental zones, longitudinal files of acills O. C. accent and metabolities and metabolities, developmental zones, longitudinal files of acills O. C. accent and metabolities and metabolities, developmental zones, longitudinal files of acills O. C. accent and metabolities and metabolities, developmental zones, longitudinal files of acilla O. C. accent and metabolities and metabolities, developmental zones, longitudinal files of acilla O. C. accent and metabolities ana			
Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer.during secondary growthModule II 14 hrsStructure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: developmental zones, longitudinal files of apila O. C. approximationStudents will get interrelated concept of the structure and function of vascular tissues, such as xylem and phloem, and their role in water and nutrient transport in plants. To comprehend developmental zones, longitudinal files of apila O. C. approximationTo approximation and metabolite files of or analytic or and metabolity of root and leaf anatomy, and			
Flowering Plants. Springer.secondary growthModule IIStructure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of aslle Q. C. compart and ma mariatem constitution of cambium and ma mariatem constitution of cambium, and transport in plants.secondary secondary of the structure and function of vascular tissues, such as xylem and phloem, and their role in water and nutrient transport in plants.			-
Module IIStructure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of calla Q. C. comparent and metabolite transport in plants.Students will get interrelated concept of the structure and function of vascular tissues, such as xylem and phloem, and their role in water and nutrient transport in plants. To comprehend development and diversity of root and leaf anatomy, and			.
Module IIStructure and function of vascular tissues: xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of of comparison of vascular tissues.Students will get interrelated concept of the structure and function of vascular tissues, such as xylem and phloem, and their role in water and nutrient transport in plants. To comprehend development and iversity of root and leaf anatomy, and		riowening riants. Springer.	•
14 hrs xylem - structure and water movement. Phloem - structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of calla O. C. concent and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and function of vascular tissues, such as xylem and phloem, and their role in water and nutrient transport in plants. To comprehend development and diversity of root and leaf anatomy, and			0
 structure and metabolite translocation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of calls. O. C. competent and metabolite translocation, of the structure and function of vascular tissues, such as xylem and phloem, and their role in water and nutrient transport in plants. To comprehend development and diversity of root and leaf anatomy, and 			0
- structure and metabolite transformation, transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of calls, Q. C. comparent and metabolite transformition.function of vascular tissues, such as xylem and phloem, and their role in water and nutrient transport in plants. To comprehend development and diversity of root and leaf anatomy, and	14 hrs	-	1
transfer cells, phloem loading and unloading. Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of calls. O. C. concent and area maristem compare			
Secondary cambium: classification, origin and constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of calls Q. C. concernt and area maristem compare		transfer cells, phloem loading and unloading.	
constitution of cambium, cambial activity, cambium in wound healing and grafting, cork- cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of calls Q. C. concent and area maristem compare		Secondary cambium: classification, origin and	,
cambium, origin and function. Root: development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of cells. O. C. concent and area meristem concent.		constitution of cambium, cambial activity,	• •
development, structural organization of root apical meristem, developmental activities, developmental zones, longitudinal files of cells, Q. C. concent and pro-meristem concent		cambium in wound healing and grafting, cork-	water and nutrient
apical meristem, developmental activities, developmental zones, longitudinal files of cells Q. C. concent and area maristem concent		cambium, origin and function. Root:	
developmental zones, longitudinal files of cells O. C. concent and area maristern concent		development, structural organization of root	_
developmental zones, longitudinal files of leaf anatomy, and		apical meristem, developmental activities,	-
able O C concept and new memory concept		developmental zones, longitudinal files of	-
- $ -$		cells, Q. C. concept and pro-meristem concept.	
T- division. Leaf: development, structural different ecological			-
diversity, anatomy of C3 and C4 plants.		-	-
course also examines			

	 Ecological leaf anatomy, sun and shade leaves, xeromorphic leaves, succulent leaves, halophytic leaves and hydromorphic leaves. Stress anatomy: anatomy and pollution, anatomical response to water stress and mineral deficiency, effects of pollution, insecticides and herbicides. References Beck, C. B. (2005) An Introduction to Plant Structure 	the effects of stress factors, such as pollution, water deficiency, and mineral deficiency, on plant anatomy.
	 and Development. Cambridge University Press. Esau, K. (1977) Anatomy of Seed Plants. 2nd edition. John Wiley & Sons. Fahn, A. (1990) Plant Anatomy. 4th edition. Butter worth Heinemann Ltd. Mauseth, J. D. (1988) Plant Anatomy. The Benjamin Cummings Publishing Co. Raghavan V. (1999) Developmental Biology of Flowering Plants. Springer. 	
Module III 14hrs	 Microtechnique: Microtechnique: Microscope-Construction and Use-Light microscope, Phase contrast and electron microscope, Micrometric measurements and camera lucida. Microtomes: Rotary, Sledge, and Cryostat. Processing procedure for micro preparation: Fixation and Storage-Killing and fixing: Principle and purpose, Common chemical fixatives, their preparation and specific uses; FAA, Carnoy's fluid, acetic alcohol, CRAF, Nawashins fluid, and Zircle's fluid. Dehydration: Principle and procedure, Dehydrating agents – Ethyl alcohol, n-Butyl alcohol, Tertiary butyl alcohol, Isopropyl alcohol and Chloroform. Different dehydrating series: Alcohol-Xylene method, Alcohol-TBA method & Alcohol Chloroform method. Paraffin infiltration – use of embedding oven (iv) Embedding: Preparation of blocks. 'L' block and paper boat. (v) Sectioning of paraffin blocks using rotary microtome: Trimming individual blocks and section cutting. 	Students will be familiarised with of various types of microscopes, microtomes, and staining techniques to prepare and observe plant specimens. They will be exposed to the principles and procedures of fixation, dehydration, embedding, sectioning, mounting, and clearing of plant tissues Perform histochemical staining, enzyme histochemistry, and vital staining to localize and detect various molecules and

	Miksche, J. P. (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press. Gahan, P. B. (1984) Plant Histochemistry. Academic Press. Jensen, W. A. (1962) Botanical Histochemistry. WH Freeman & Company. Johansen, D. A. (1940) Plant Microtechnique. McGraw Hill. Khasim, S. M. (2002) Botanical Microtechnique: Principles and Practice. Capital Publishing Company. Pearse, A. G. E. (1980) Histochemistry, Theoretical and Applied. 4th Edition, Vol. 1 & 2. Churchill Livingstone. Sanderson, J. B. (1994). Biological Microtechnique. Bios Scientific Publishers.	tissues
Module IV 10 hrs	Adhesives and their preparations. Mounting and spreading of paraffin ribbons on micro slides. Staining: Stains used in microtechnique; Classification – Natural – Hematoxylene, Carmine, Orcein.Synthetic (coal tar) – Basic: Safranin, Crystal violet, Basic fuchsin, Cotton blue - Acidic: Fast green, Orange G, Erythrosine, Eosin, and Toluidine blue.Staining procedure: Single, double and triple staining. Staining combination: safranin and fast green /cotton blue crystal violet and orange- G/erythrosine, Hematoxyline, and safranin. Techniques of clearing, mounting, labelling and storing of permanent slides.Whole mounts, Vein clearing, and tissue maceration. Histochemical staining: Localization of proteins, nucleic acids, insoluble carbohydrates & lipids. Enzyme histochemistry – General account. Vital staining: Principle, procedure, and applications. References Miksche, J. P. (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press. Pearse, A. G. E. (1980) Histochemistry, Theoretical and Applied. 4th Edition, Vol. 1 & 2. Churchill Livingstone. Sanderson, J. B. (1994). Biological Microtechnique. Bios Scientific Publishers. Krishnamoorthy K. V. (1999) Methods in Cell Wall Cytochemistry. C.R.C. Press.	The module enables students to acquire the knowledge and skills of using various adhesives, mounting techniques, and staining procedures to prepare and observe plant specimens. Train students to perform single, double, and triple staining, and to use various staining combinations to enhance the contrast and visibility of plant tissues Introduce students to the methods and applications of histochemistry, whole mounts, vein clearing, and tissue maceration techniques

Course Code & Title	MSPSC01DSC03 GENETICS AND EVOLUTION	Module Outcome
Course Objectives:	Understand the basic principles of genetics and heredity like Mendelian laws of inheritance, chromosome theory of inheritance, sex determination, linkage and mapping, extrachromosomal inheritance, prokaryotic genetics and population genetics.	
Module 1	Science of Genetics :	The
12 hours	An overview of modern history of the science of Heredity- Classical, Molecular and Evolutionary Genetics-The discovery and re discovery of Genes. Probability factor in Mendelian genetics- A critical analysis. Chi- square analysis, pedigree analysis and probability. Allelic interactions- Incomplete Dominance and Codominance, Lethal Alleles, Hierarchy of Dominance, Multiple Alleles, Pleiotropy, Non allelic interactions-Epistasis Polygenic inheritance, Quantitative trait loci (QTL), Statistics of quantitative genetics- Heritability. Genetic analysis pathways- Complementation test for alleles, Penetrance and Expressivity, Genes and Environment-Genetics and society. Chromosomal Basis of Inheritance: Chromosomal theory of inheritance, Sex-linked traits, Pedigree analysis of sex-linked traits, Activation and inactivation of X-chromosome, Sex- influenced traits, Sex-limited traits, Sex Determination.	students will be able to solve the problems related to allelic interactio ns and understa nd the chromos omal basis of inheritan ce
References Module I	 Snustad PD, Simmons MJ. 2015. Principles of Genetics, 7th edition. Wiley. Klug WS, Cummings MR, Spencer CA, Palladino MA, Darrell Killian. 2018. Concepts of Genetics, 12th edition. Pearson. Griffiths AJF, Wessler SR, Carroll SB, Doebley J. 2015. Introduction to Genetic Analysis, 11th edition. W.H. Freeman & Worth Publishers. Pierce BA. 2016. Genetics: A Conceptual Approach 6th edition. W. H. Freeman. Strickberger MW. 2015. Genetics, 3rd edition. Pearson. Samuels ML, Witmer JA, Schaffner A. 2015. Statistics for the Life Sciences, 5th edition. Pearson. Brooker R. 2017. Genetics: Analysis and Principles, 5th edition. McGraw-Hill Higher 	

	 Education 7. Tamarin R, 7th edition. 2017. Principles of Genetics. McGraw Hill Education. 8. Elrod S, Stansfield W. 2010. Schaum's Outline of Genetics, 5th edition. McGraw-Hill 	
Module 2	Linkage and Gene Mapping:	Students will
12 hours	Linkage and Gene Wapping. Linkage, Crossing over, Evolutionary significance of recombination,	be able to
	Two-point test cross, Three-point test cross, Genetic Mapping,	describe
	Genetic mapping in Drosophila, Linkage and mapping using tetrads,	about the
	Physical mapping, Application of mapping.	molecular, quantitative
	Eukaryotic chromosomes-structure, classification and	and
	organization, Banding, karyotyping, Chromosomal aberrations.	evolutionary
	Extra chromosomal inheritance: Cytoplasmic inheritance,	genetics.
	Mitochondrial DNA, interplay between mitochondria and nuclear	
	gene products, Chloroplast DNA, chloroplast biogenesis, Origin and	
	evolution of mitochondria and chloroplast, Maternal effect.	
	Introduction to Epigenetic inheritance: Epigenetic inheritance, Genomic Imprinting and Anticipation	
References	1. Snustad PD, Simmons MJ. 2015. Principles of Genetics, 7th	
Module 2	edition. Wiley. 2. Klug WS, Cummings MR, Spencer CA, Palladino MA, Darrell	
	Killian. 2018.	
	Concepts of Genetics, 12th edition. Pearson.	
	3. Griffiths AJF, Wessler SR, Carroll SB, Doebley J. 2015. Introduction to Genetic	
	Analysis, 11th edition. W.H. Freeman & Worth Publishers.	
	4. Pierce BA. 2016. Genetics: A Conceptual Approach 6th edition.W. H. Freeman.	

Module 3	Methods of gene transfer in prokaryotes- Transformation,	Describe
12 hours	 Methods of gene transfer in prokaryotes- mainformation, Conjugation and Transduction mapping.Phage genetics and mapping. Developmental genetics- genetic control of development in plants- genetic control of cell lineages. Behavioural genetics- general account Applied genetics- Eugenics, euphenics and euthenics. Immunogenetics. Evolutionary Genetics-Population genetics Genetic variation in populations and measuring - changes in genetic structure, causes and consequences – speciation and evolution. Hardy - Weinberg Equilibrium, Sewall Wright effect, Inbreeding, Natural selection, inbreeding and co-ancestry.Molecular Evolution: Concepts of neutral evolution, molecular divergence and molecular clocks; Molecular tools in phylogeny, classification and identification; Protein and nucleotide sequence analysis; origin of new genes and proteins; Gene duplication and divergence. 	major evolutionary lineages of plants and their defining characteristic s
References Module 3	 Snustad PD, Simmons MJ. 2015. Principles of Genetics, 7th edition. Wiley. Klug WS, Cummings MR, Spencer CA, Palladino MA, Darrell Killian. 2018. Concepts of Genetics, 12th edition. Pearson. Griffiths AJF, Wessler SR, Carroll SB, Doebley J. 2015. Introduction to Genetic Analysis, 11th edition. W.H. Freeman & Worth Publishers. Pierce BA. 2016. Genetics: A Conceptual Approach 6th edition. W. H. Freeman. Hartl DL, Clark AG. 2006. Principles of Population Genetics 4th edition. Sinauer Associates is an imprint of Oxford University Press. Crow JF, Kimura M. 2009. An Introduction to Population Genetics Theory. The Blackburn Press. Hedrick PW. 2010. Genetics of Populations, 4th edition. Jones & Bartlett Learning Brooker R. J. Genetics: Analysis and Principles. Addison Wesley Longman Inc. Hedrick P. W. Genetics of Populations. Jones and Bartlett Publishers. 	
Module 4 12 hours	Evolution History of development of early evolutionary principles- Lamarck; Darwin–concepts of variation, adaptation, struggle, fitness and natural selection; Mendelism; Spontaneity of mutations; The evolutionary synthesis.Neo Darwinism	The students will be able to explain the mechanisms which

	The Origin and Early history of life: Origin of basic biological	underlie
	molecules; Abiotic synthesis of organic monomers and polymers;	evolution at
	Concept of Oparin and Haldane; Experiment of Miller (1953); The	the molecular
	first cell; Evolution of prokaryotes; Origin of eukaryotic cells;	level.
	Evolution of unicellular eukaryotes; Anaerobic metabolism,	
	photosynthesis and aerobic metabolism.	
	Palaeontology and Evolutionary History: The evolutionary time	
	scale; Eras, periods and epoch; Major events in the evolutionary	
	time scale; Origins of unicellular and multi cellular organisms;	
	Major groups of plants and animals; Stages in primate evolution	
	including Homo sapiens.	
	Origin of species -Species are the basic unit of evolution-Species	
	maintain their genetic distinctiveness through the barriers to	
	reproduction-clustures of species reflect rapid evolution.	
	Adaptive radiation; Isolating mechanisms; Evolution and	
	Speciation; -Allopatric and Sympatric; Convergent evolution;	
	Sexual selection; Co-evolution.	
	Evolution and Plant diversification -The universal tree of life-an	
	overview-cladistics-From single cell organisms to Kingdoms-Early	
	plant life-The algal ancestry-Bryophytes—Early vascular plants-	
	origin of land plants-Angiosperms—The culmination of plant	
	Evolution-The main line of plant evolution-Retrospect and prospect.	
References	1.Futuyma, Douglas J Evolution - Sunderland, Sinauer Associates,	
Module 4	2013 - 656p.	
	2.Guttman, Burton S. Evolution : a beginner's guide - Oxford	
	Oneworld 2005 203p.	
	3. Young, David, The discovery of evolution - 2 - Cambridge ; New	
	York : Cambridge University Press, in association with Natural	
	History Museum, London, 2007 viii, 281 p	
	4.Hall, Brian Keith, Strickberger's evolution - 5 - Burlington, Mass.	
	Jones & Bartlett Learning, c2014 xxvi, 644 p. ill.	
	5.Lull, Richard Swann Organic evolution - New York, The	
	Macmillan Company, 2009 - 744p.ISBN:9788181160447	
	6.Ingrouille, Martin Plants : Diversity and Evolution - Cambridge :	
	Cambridge University Press, 2006 440p.	
	7.Charles Darwin Origin of Species - New Delhi Goyl Saab - 479p.	
	8.Benton, M. J.Introduction to paleobiology and the fossil record -	
	Chichester, UK Hoboken, NJ Wiley Blackwell, 2009 xii, 592 p.	
	9. Delevoryas, Theodore Plant Diversification	
	(2ndEdn),Halt,rinehart and winston	
	10. Dobzhansky, B (1961) Genetics and the origin of species	
	Columbia University press, New york.	
	11. Simmonds N.W.(Ed)(1976) Evolution of crop plants. Longman	
	London and NewYork	

12.Stebins G.L(1950)Variation and Evolution in plants.Columbia
University press, Newyork
13. StebinsG.L(1970) The process of organic evolution.
prenticehall, new Delhi
14. Strwart W.N (1983) paleobotany and Evolution of plants-
Cambridge University press.
15.Harlan.P.Banks(1972) Evolution and plants of the
past,Macmillan
16. Jay.M.Savage (1977) Evolution .Halt,rinehart and winston,New
York
17. Joan Eiger Gottlieb (1971) Plants Adaptation through evolution.
18.Delevoryas, Theodore-PlantDiversification (2nd Edn), Halt,
Rinehart and winston
19. Dobzhansky,B(1961) Genetics and the origin of species
Columbia University press, Newyork.

Course Code:	MSPSC01DSC04	Module Outcome
Course Coue:	MYCOLOGY AND PLANT PATHOLOGY	Module Outcome
Course	1. To learn about major pathogen groups that	
objectives:	infect plants	
	2. The impact of plant diseases on food security	
	and ecosystems	
	3. To learn about how plant defend against the	
	pathogens and how to manipulate plant	
	pathogen interaction in favour of plants.	
Module I	Introduction:	The students will be
12hrs	Need to study plant diseases- important plant	able to acquire
	diseases that shaped the history of human	knowledge on
	civilization. 10 most important plant diseases of	diverse groups of
	the world & India. Plant- Virus-Vector	viruses that affect
	Interactions: Plant viral diseases, symptoms,	plants
	major viral pathogens. Viral genomes, size and	-
	nature of proteins, viral replication within the	
	host cell and viral movement from cell to cell	
	within the host. Viral movement from plant to	
	plant. Insect vectors involved in transmission,	
	persistent and non-persistent transmission. Plant	
	response to viral pathogens and resistance	
	mechanisms.	
	References	
	Agrios, G. N. 2006. Plant Pathology, Academic Press.	
	Dickinson, M. Molecular Plant Pathology. 2003.	
	BIOS Scientific Publishers.	
	J.S. Huang. 2001. Plant pathogenesis and	
	resistance: biochemistry and physiology of	
	plant-microbe interactions. Kluwer Academic.	
Module	Plant- Bacterial Interactions:	The students will be
12hrs	Plant bacterial diseases, classes of plant	able to Recognize
	pathogenic bacterium, general symptoms. Alpha	the host and
	and beta proteobacterial phytopathogens	pathogen interaction
	(Agrobacterium and Ralstonia), gamma	
	proteobacterial phytopathogens (Erwinia,	
	Xanthomonas). Gram-positive and fastidious	
	phytopathogenic bacteria: Clavibacter and	
	Xylella. Plant pathogenic mycoplasmas. Quorum	
	sensing, Virulence factors- Toxins, EPS, Cell	
	wall degrading enzymes, type I, II, III and IV	

	secretion system. Regulation of Hrp genes, hairpins and type III effectors. Modes of transmission. Plant response to pathogenic bacteria. References Clarence I. Kado Plant Bacteriology, Published by American Psychopathological Society. Agrios, G. N. 2006. Plant Pathology, Academic Press. Dickinson,M. Molecular Plant Pathology. 2003. BIOS Scientific Publishers. J.S. Huang. 2001. Plant pathogenesis and resistance: biochemistry and physiology of plant-microbe interactions. Kluwer Academic.	
Module III 12 hrs	 Plant –Fungal interactions: Necrotrophic phytopathogenic fungi –Diseases, symptoms, mode of pathogenesis, Host selective toxins, non-host selective toxins, Genetics of toxin biosynthesis and toxin resistance, Plant susceptibility to toxins. Biotrophic phytopathogenic fungi – Diseases, symptoms, mode of pathogenesis, Specialized structures for nutrition, Effectors - apoplastic and cytoplasmic., Plant response to fungal infection and resistance. Quelling Importance of the plant diseases; the concept of plant disease; causes of plant diseases; classification of plant diseases; parasitism and pathogenesis; Koch's postulates; effect of the pathogen on the plants; symptoms of plant diseases; development of epidemics; plant disease management; major crop diseases of Kerala. References H.H. Prell and P. Day, Plant–Fungal Pathogen Interaction: A Classical and Molecular View; Published by Springer-Verla Agrios, G. N. 2006. Plant Pathology, Academic Press. Dickinson, M. Molecular Plant Pathology. 2003. BIOS Scientific Publishers. 	Students will be able for handling disease free varieties and Implement the disease management techniques in the fields.

Module IV	Plant – Nematode interactions:	Students will be
12 hrs	Classes of plant parasitic nematodes, feeding	able to understand
	organs, Ecto and Endo parasitic nematodes,	how plant defend
	Nematode dissemination, important plant	against the
	diseases caused by nematodes, Nematode	pathogens and how
	effectors and host targets, Plant response to	to manipulate plant
	nematodes and resistance mechanisms. Plant	pathogen interaction
	interaction with parasitic plants. Plant Resistance	in favour of plants.
	and Susceptibility factors: Preformed defence,	
	Host resistance and non-host resistance, Induced	
	resistance and Systemic Acquired Resistance,	
	PAMPS and PAMP Triggered Immunity (PTI),	
	Effector Triggered Immunity (ETI), Effector	
	Triggered Susceptibility (ETS). Theories and	
	models on Plant Resistance to pathogens.	
	Applied Plant Pathology: Methods of Plant	
	pathogen diagnostics. Evolution of Plant-	
	Pathogen interactions- its significance on	
	breeding disease-resistant plants, Genetic	
	engineering of Plants for resistance.	
	References	
	Roland N. Perry and Maurice Moens. Plant	
	Nematology, Published by CABI	

Course Code and Title	MSPSC01DSE01 METHODOLOGY AND PHILOSOPHY OF SCIENCE	Module Outcome
Course Objectives	 i) Understand what science is and in what ways science differs from non-science and pseudoscience subjects ii) Understand the different methods of reasoning in Science. iii) Get an idea about the modes of scientific explanations. iv)Understand the role of paradigm shifts in various branches of scientific research; also get an idea about the scientific revolutions in various branches of science v) Understand the value, its acceptance and the criticism to Science. vi)Understand the historical milestones in the evolution of scientific thoughts and research. vii)Distinguish between different centuries concerning the growth of science and scientific thoughts. 	
Module I 12hrs	 1.What is science? Scientific knowledge- Streams of Science-Basic and applied science- A summary of the History of science - Science and society – Science as a human activity - Origin of modern science. Philosophy of Science- A brief Historical introduction-definition, scope and the evolution of concepts - Science and pseudo-science. 2. Scientific Method and Reasoning Scientific method - Observations, pieces of evidence and proofs- Hypothetico-deductive model, Inductive model home's problem of induction-Significance of verification (proving) - corroboration and falsification (disproving)- positivism. Karl popper and the concept of falsification. Realism and Antirealism- Observable and unobservable distinctions. 3. Explanation in science Hempel's covering law model of explanation - The problem of symmetry Explanation and causality - Can science explain everything? - Explanation and Reduction. 	To understand what science is and in what ways science differs from non-science and pseudoscience subjects and Students will be able to understand the different methods of reasoning in Science.

Module II	4. Scientific Change and Scientific Revolutions	Understand the
10hrs	Logical positivist philosophy of science –	historical milestones
	Empiricism-New Paradigms and Scientific	in the evolution of
	Change - The structure of scientific revolutions -	scientific thoughts
	Incommensurability and theory-ladenness of data	and research.
	- Thomas Kuhn and the rationality of science	
	5. Scientific temper and its fostering.	
	Critical thinking and logical reasoning in science.	
	Science and its critics- Science as just one	
	narrative -scientism- Science and religion	
	debates, Science and values. Is Science value-	
	free?	
Module III	Experimentation in science	Get an idea about the
14hrs	Introduction-Selecting a problem-Hypothesis-	modes of scientific
	auxiliary hypothesis and ad-hoc hypothesis.	explanations based
	Experimental Design-Variables-Correlation and	on experiments
	causality-sampling—control in experiments	1
	Experimental bias-performing experiments-	
	Measurement error.	
	Philosophy of Biology.	
	What is biology? -The nature and logic of	
	biological sciences -Logic of lifeMolecular logic	
	of life-Problems of Biological classification —	
	biological species concept- Evolution and Natural	
	selection- Function and adaptation-The gene-	
	centric view of evolution- Philosophical issues in	
	Genetics - Classical and Molecular -Genes and	
	information -Genetic determinism. Reductionism	
	in Biology – argument from molecular biology-	
	Ecological concepts- Anthropocentric and	
	Ecocentric- Deep and Shallow - Biological	
	determinism. Biology and EthicsEarly history	
	and development of methods in Biology.	
Module IV		The students will
12hrs	History of Biology in the Seventeenth century:	have an
	Anatomists, Microscopists History of Biology in	
	the Eighteenth century: Carolus Linnaeus-The	understanding of the
	founder of biological Taxonomy; Precursors to	ups and downs in the
	modern evolutionary theory- Lamarck and Cuvier	history of science, the
	History of Biology in the Nineteenth century:	•
	Birth of associations and societies to promote	pace of scientific
	science; Charles Darwin; Pre-Darwinian	research during the
	evolution; Origin of species-Gregor Mendel's	17th to 20th

	Experiments - The emergence of biological disciplines; Experimental Physiology; Cell theory, cell pathology and germ theory. History of Biology in the Twentieth century: The first half of 20 th century: Growth of microbiology and Biochemistry; Genetics and heredity Second half of 20 th century: The architects of life - proteins, DNA and RNA; The origins and borderlines of life; Growth of genetic	Centuries, contributions made by scientists in the past centuries and the methods and philosophy behind scientific
	engineering; Growth of Biotechnology; Growth of Genomics; Growth of Recombinant DNA.	experimenting.
REFERENCES	 Philosophy of Science Alan Chalmers. What is this thing called science? University of Queensland Press, Open University Press, 3rd revised edition, Hackett,1999 Elliott Sober. Philosophy of Biology, West view press2000 Richard Dewitt. Worldviews: an introduction to history and philosophy of science. Blackwell publishing 2004. Boyd, R., Gasper, P., and Trout, J.D. (eds., 1991), The Philosophy of Science, Blackwell Publishers, Cambridge, MA. Glaze brook, Trish (2000), Heidegger's Philosophy of Science, Fordham University Press. Gutting, Gary (2004), Continental Philosophy of Science, Blackwell Publishers, Cambridge, MA. History and Philosophy of Biology Allen, Garland E. Thomas Hunt Morgan: The Man and His Science. Princeton University Press: Princeton, 12 1978. ISBN 0-691-08200-6 2. Allen, Garland E. Life Science in the Twentieth Century. Cambridge University Press, 1975. Annas, Julia Classical Greek Philosophy. In Boardman, John; Griffin, Jasper; Murray, Oswyn 	
	 (ed.) The Oxford History of the Classical World. Oxford University Press: New York, 1986. ISBN0-19-872112-9 4. Bowler, Peter J.The Earth Encompassed: A History of the Environmental Sciences. W. W. 	

Norton & Company: New York, 1992. ISBN0-	
393-32080-4 5 Revular Poter I. Evolution: The History of an	
5. Bowler, Peter J. Evolution: The History of an	
Idea. California University Press, 2003. ISBN0- 52023693-9.	
6. Browne, Janet. The Secular Ark: Studies in the	
History of Biogeography. Yale University Press:	
NewHave, 1983. ISBN 0300024606	
7. Bud, Robert. The Uses of Life: A History of	
Biotechnology. Cambridge University Press:	
London, 1993. ISBN 0521382408	
8. Coleman, William Biology in the Nineteenth	
Century: Problems of Form, Function, and	
Transformation. Cambridge University Press:	
New York, 1977. ISBN0-521-29293-X	
9. de Chadarevian, Soraya. Designs for Life:	
Molecular Biology after World War II.	
Cambridge University Press: Cambridge, 2002.	
ISBN0521570786	
10. Davies, Kevin. Cracking the Genome: Inside	
the Race to Unlock Human DNA. The Free Press:	
New York, 2001. ISBN 0-7432-0479-4 11.	
Holmes, Frederic Lawrence. Meselson, Stahl, and	
the Replication of DNA: A History of "The Most	
Beautiful Experiment in Biology". Yale	
University Press: New Haven, 2001.	
ISBN0300085400	
12. Kay, Lily E. The Molecular Vision of Life:	
Caltech, The Rockefeller Foundation, and the	
Rise of the New Biology. Oxford University	
Press: New York, 1993. ISBN0-19-511143-5	
13. Larson, Edward J. Evolution: The	
Remarkable History of a Scientific Theory. The	
Modern Library: New York, 2004. ISBN0-679-	
64288-9	
14. Lennox, James (2006-02-15). "Aristotle's	
Biology". Stanford Encyclopedia of Philosophy.	
15. Lovejoy, Arthur O. The Great Chain of Being:	
A Study of the History of an Idea. Harvard	
University Press, 1936. Reprinted by Harper &	
Row, ISBN 0-674-36150-4, 2005 paperback:	
ISBN0-674-36153-9.	

16. Magner, Lois N. A History of the Life	
Sciences, third edition. Marcel Dekker, Inc.: New	
York, 2002. ISBN 0-8247-0824-5	
17. Mason, Stephen F. A History of the Sciences.	
Collier Books: New York,1956.	
18. Mayr, Ernst. The Growth of Biological	
Thought: Diversity, Evolution, and Inheritance.	
The Belknap Press of Harvard University Press:	
Cambridge, Massachusetts, 1982. ISBN0- 674-	
36445-7	
19. Mayr, Ernst and William B. Provine, eds. The	
Evolutionary Synthesis: Perspectives on the	
Unification of Biology. Harvard University Press:	
Cambridge, 1998. ISBN0-674-27226-9	
20. Morange, Michel. A History of Molecular	
Biology, translated by Matthew Cobb. Harvard	
University Press: Cambridge, 1998. ISBN0-674-	
39855-6	
21. Secord, James A. Victorian Sensation: The	
Extraordinary Publication, Reception, and Secret	
Authorship of Vestiges of the Natural History of	
Creation. University of Chicago Press: Chicago,	
2000. ISBN0-226-74410-8	
22. Serafini, Anthony The Epic History of	
Biology, Perseus Publishing, 1993. Sulston, John.	
The Common Thread: A Story of Science,	
Politics, Ethics and the Human Genome. National	
Academy Press, 2002. ISBN 0309084091	
23. Smocovitis, Vassiliki Betty. Unifying	
Biology: The Evolutionary Synthesis and	
Evolutionary Biology. Princeton University	
Press: Princeton, 1996. ISBN0-691-03343-9	
24. Spangenburg R and D K Moser. History of	
Science from the Ancient Greeks to the Scientific	
Revolution. 2000. Universities Press. 25.	
Spangenburg R and D K Moser. History of	
Science in the 18thCentury. 2000. Universities	
Press.	
26. Spangenburg R and D K Moser. History of	
Science in the 19thCentury. 2000. Universities	
Press.	
27. Spangenburg R and D K Moser. History of	
Science from 1895 to 1945. 2000.	
UniversitiesPress.	

28. Spangenburg R and D K Moser. History of	
Science from 1946 to 1990s. 2000.	
UniversitiesPress.	
29. Summers, William C. Félix d' Herelle and the	
Origins of Molecular Biology, Yale University	
Press: New Haven, 1999. ISBN 0-300-07127-2	
30. Zimmer, Carl. Evolution: the triumph of an	
idea. HarperCollins: New York,2001	
31.Brian Garvey Philosophy of Biology (2007)	
Acumen Publishing Limited Stocksfield Hall	
Stocksfield	
32. Alex Rosenberg and Daniel W. McShea -	
Philosophy of Biology A Contemporary	
Introduction (2008) by Routledge 270 Madison	
Ave, New York	
33.David L. hull and michael R-Use -The	
Philosophy of Biology Oxford university press	
1998	

Course Code& Title	PRACTICAL 1: MSPSC01DSC05 BIOLOGY OF ARCHEGONIATE, ANATOMY OF ANGIOSPERM AND MICROTECHNIQUE	Module Outcome
Course Objectives	To gain knowledge on the diversity, structural organization and reproduction of algae, Bryophytes, Pteridophytes and Gymnosperms To compare the similarities and differences in these groups To acquire knowledge about the anatomical features of Plants	
Module I 24hrs	Module I. Algae and BryophytesAlgae1. Collection, preparation and presentation of algal herbarium (minimum 5 herbarium sheets).2. Field collection and study of the types mentioned below and their classification up to generic level. Cyanobacteria: Nostoc, Anabaena Chlorophyta: Cosmarium, Cladophora, Pithophora, Bryopsis, Codium, Xanthophyta: Botrydium, Vaucheria. Bacillariophyta: Pinnularia, Navicula Phaeophyta: Padina, Sargassum, Rhodophyta: Gracilaria, Batrachospermum,Bryophytes: Field collection, Morphological and structural study of the following genera: Asterella, Cyathodium, Anthoceros, Bryum, Pogonatum, Porella, Marchantia.	Module I. Algae and Bryophytes The module aims to teach students how to collect, prepare, and present algal and bryophyte specimens for taxonomic and morphological study. The course also covers the identification and classification of various genera of algae and bryophytes, based on their external and internal features. The course also introduces students to the diversity and distribution of algae and bryophytes in different habitats.
Module II 20 hrs	Pteridophytes1. Morphological, anatomical and reproductivefeatures of Lycopodium, Isoetes, Angiopteris,Osmunda, Lygodium, Salvinia.2. Fossils: Rhynia, Lepidodendron,3. Habitat study of Lycopodium, Selaginella,Actiniopteris, Drynaria and Salvinia.4. Spore germination and development ofprothallus in Knop's Agar medium.5. Submission of a field study report and 5herbarium specimens of common, localpteridophytes.	Module II. Pteridophytes The module aims equip students to observe and analyze the morphological, anatomical, and reproductive features of various pteridophytes. It also covers the identification and classification of different orders and genera of pteridophytes, based on

		their external and internal
		characteristics. The course
		also trains students to
		perform spore germination
		and prothallus
		development experiments
		in laboratory conditions.
Module III	Module III. Gymnosperms:	Module III.
20 hrs	1. Identification of petrifactions, compressions,	Gymnosperms:
	impressions, slides of fossil types included in	After completing this
	gymnosperm groups mentioned above	modulestudents will be
	2. Comparative study of vegetative and	able to identify mentioned
	reproductive structures of Zamia, Araucaria,	gymnosperms using
	Cupressus, Podocarpus and Ephedra (living	morphological and
	gymnosperms)	anatomical characters of
	3. Morphological and anatomical studies of the	vegetative and
	above-mentioned taxa	reproductive structures
		reproductive structures
	Anatomy of Angiosperms and Microtechnique	Module IV. Anatomy of
Module IV	Anomalous secondary growth: Dracaena, Bignonia,	Angiosperms and
Module IV 30 hrs	Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea	Angiosperms and Microtechnique
	Anomalous secondary growth: Dracaena, Bignonia,	Angiosperms and Microtechnique The course aims to train
	Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot.	Angiosperms and Microtechnique The course aims to train students to prepare and
	Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot.Leaf anatomy: C3 and C4 plants, succulents,	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show
	Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot.Leaf anatomy: C3 and C4 plants, succulents,	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. Microtechnique: Preparation of stained permanent 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary growth. The course also covers the microtechnique skills of preparing stained
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. Microtechnique: Preparation of stained permanent slides of the following: Whole mounts, freehand 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary growth. The course also covers the microtechnique skills of preparing stained permanent slides of various
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. Microtechnique: Preparation of stained permanent slides of the following: Whole mounts, freehand sections, maceration and serial microtome sections 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary growth. The course also covers the microtechnique skills of preparing stained permanent slides of various plant tissues, using whole
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. Microtechnique: Preparation of stained permanent slides of the following: Whole mounts, freehand sections, maceration and serial microtome sections using double, triple, and histochemical staining 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary growth. The course also covers the microtechnique skills of preparing stained permanent slides of various plant tissues, using whole mounts, freehand sections,
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. Microtechnique: Preparation of stained permanent slides of the following: Whole mounts, freehand sections, maceration and serial microtome sections using double, triple, and histochemical staining procedures. At least twenty permanent micro 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary growth. The course also covers the microtechnique skills of preparing stained permanent slides of various plant tissues, using whole mounts, freehand sections, maceration, and serial
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. Microtechnique: Preparation of stained permanent slides of the following: Whole mounts, freehand sections, maceration and serial microtome sections using double, triple, and histochemical staining procedures. At least twenty permanent micro preparations representing whole mounts, freehand 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary growth. The course also covers the microtechnique skills of preparing stained permanent slides of various plant tissues, using whole mounts, freehand sections, maceration, and serial microtome sections. The
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. Microtechnique: Preparation of stained permanent slides of the following: Whole mounts, freehand sections, maceration and serial microtome sections using double, triple, and histochemical staining procedures. At least twenty permanent micro preparations representing whole mounts, freehand sections and serial sections should be submitted for 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary growth. The course also covers the microtechnique skills of preparing stained permanent slides of various plant tissues, using whole mounts, freehand sections, maceration, and serial
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. Microtechnique: Preparation of stained permanent slides of the following: Whole mounts, freehand sections, maceration and serial microtome sections using double, triple, and histochemical staining procedures. At least twenty permanent micro preparations representing whole mounts, freehand 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary growth. The course also covers the microtechnique skills of preparing stained permanent slides of various plant tissues, using whole mounts, freehand sections, maceration, and serial microtome sections. The course also trains students
	 Anomalous secondary growth: Dracaena, Bignonia, Amaranthus, Nyctanthes, Mirabilis, Bougainvillea and beetroot. Leaf anatomy: C3 and C4 plants, succulents, xeromorphic leaves, halophytes and hydrophytes. Stomata: types, stomatal index. Microtechnique: Preparation of stained permanent slides of the following: Whole mounts, freehand sections, maceration and serial microtome sections using double, triple, and histochemical staining procedures. At least twenty permanent micro preparations representing whole mounts, freehand sections and serial sections should be submitted for 	Angiosperms and Microtechnique The course aims to train students to prepare and identify sections of plant tissues that show anomalous secondary growth. The course also covers the microtechnique skills of preparing stained permanent slides of various plant tissues, using whole mounts, freehand sections, maceration, and serial microtome sections. The course also trains students to use different types of

REFERENCES	Chapman, V. J. 1941. An Introduction to the Study	
	of Algae. Cambridge University Press.	
	Chapman, V. J. & Chapman, D. J. 1973. The Algae.	
	Macmillan.	
	Desikachary, T. V. 1959. Cyanophyta. Indian	
	Council of Agricultural Research. Fritsch, F. E.	
	1961. The Structure and Reproduction of Algae.	
	Vol. 2. Cambridge University Press.	
	Irvine, D. E. & D. M. John. 1984. Systematics of	
	the Green Algae. Academic Press.	
	Stevensen, J. et al. 1996. Algal Ecology.	
	Freshwater Benthic ecosystems. Academic Press.	
	Krishnamurthy, V. 1998. Algae of India and	
	Neighboring Countries. 1. Chlorophycota. Oxford	
	& IBH publishing Co. Pvt. Ltd.	
	Kumar, H. D. 1990. Introductory phycology. East	
	West Press Pvt. Ltd.	
	Prescott, G. W.1969. The Algae. A Review. Thomas	
	Nelson and Sons Ltd.	
	Smith, G. M. 1978. Manual of Phycology. The	
	Ronald Press Company.	
	Trainor, F. R. 1978. Introductory Phycology. John	
	Wiley and Sons.	
	Van Den Hock, Mann, D.G. and Jahus, H.M.	
	Algae: An Introduction to Phycology. Cambridge	
	University Press.	
	Venkataraman, G. S. 1972. Algal Biofertilizers and	
	Rice Cultivation. Today and Tomorrow's	
	publishers.	
	Venkataraman, G. S., Goyal, S. K., Kaushik B. D.,	
	and Roychaudhary, P. 1974. Algae form and	
	function. Today and Tomorrow's printers	
	Vijayaraghavan, M. R. & Bhatia, B. 1997. Red	
	Algae: Structure, Ultrastructure and Reproduction.	
	APH Publishing Corporation.	
	Smith, A. J. E. (ed.). 1982. Bryophyte Ecology.	
	Chapman & Hall.	
	Shaw, A. J. & Goffinet, B. (eds.). 2000. Bryophyte	
	Biology, Cambridge University Press.	
	Glime, J. M. & Saxena, D.1991. Uses of	
	Bryophytes. Today and Tomorrows Printers	
	&Publishers.	
	Schofield, W. B. 2001. Introduction to Bryology.	
	The Blackburn Press.	

Nair, M. C. et al. 2005. Bryophytes of Wayanad,
Western Ghats. MNHS, Calicut.
Bierhost, D. W. 1971. Morphology of Vascular
Plants. Macmillan Co.
Dyer, A. C. 1979. The experimental Biology of
Ferns. Academic Press.
Hameed, C. A., Rajesh, K. P. and Madhusoodanan,
P. V. 2003. Filmy Ferns of South India. Penta Book
Publishers & Distributors.
Jermy, A. C. 1973 (Ed.). The Phylogeny and
Classification of Ferns. Academic Press.
Kramer, K. U. & Green, P. S. 1991. The families
and genera of Vascular Plants, Narosa.
Nampy, S. and Madhusoodanan, P. V. 1998. Fern
Flora of South India-Taxonomic Revision of
Polypodioid Ferns. Daya Publishing House
Andrews Jr., H. N. 1961. Studies in Paleobotany.
John Wiley, New York
Chamberlain, C. J. 1919. The Living Cycads.
Chicago University Press, Chicago.
Chemberlain, C. J. 1935. Gymnosperms: Structure
and Evolution.Chicago University Press.
Crepet, W. L. 1972. Investigations of North
American cycadeoids: Pollination mechanisms in
Cycadeoidea. Amer. J. Bot. 59: 1048-1056
Dallimore, W. & Jackson, A. B. 1966. A Handbook
of Coinfera. 4th edn, E.Arnold. Delevoryas, T.
1962. Morphology and evolution of fossil plants.
New York.
Favre-Duchartre, M. 1958. Ginkgo, an oviparous
plant. Phytomorphology 8: 377-390
Greguss, P. 1955. Identification of Living
Gymnosperms on the Basis of Xylotomy.
AkadKiado.
Harris, T. M. 1951. The relationships of the
Caytoniales. Phytomorphology 1: 29-39.
Mehra, P. N. 1988. Indian Conifers: Gnetophytes
and Phylogeny of Gymnosperms.
Pramodh P. Kapur, Raj Bandhu Ind. Complex, New
Delhi
Meyen, S. V. 1984. Basic features of gymnosperm:
Systematics and phylogeny as evidenced by the
fossil record. Bot. Rev. 50: 1-111 Meyen, S. V.
1986. Gymnosperm systematics and phylogeny: A

reply to commentaries by CB Beck, CN Miller, and	
GW Rothwell. Bot. Rev. 52: 300-3213	
Millay, M. A., & Taylor, T. N. 1976. Evolutionary	
trends in fossil gymnosperm pollen. Rev.	
Palaeobot. Palynol. 21: 65-91.	
Miller Jr., C.N. 1977. Mesozoic confers. Bot. Rev.	
43: 217-280	
Pant, D. D. 1975. The classification of	
gymnospermous plants. Palaebot. 6: 65-70	
Pearson HHW (1929) Gnetales, Cambridge Univ.	
Press, London Madhulata, Sanwal. 1962.	
Morphology and embryology of Gnetumgnemon L.	
Phytomorphology 12: 243-264	
Scott, D. H. 1909. Studies in Fossil Botany, 2nd	
edn. Vol 1 A and C Black, London	
Scott, D. H. 1923. Studies in Fossil Botany, Vol 2.	
A and C Black, London.	
Sharma, B. D. 1994. Gymnosperms: Morphology,	
Systematics, Reproductive Biology, In: Johri, B.M.	
(ed.), Botany in India: History and Progress. Vol. 2.	
Oxford & IBH, New Delhi. pp 1-23.	
Singh, H. 1978. Embryology of Gymnosperms.	
Geb Borntrager, Berlin.	
Stewart, W.N. 1981. The Progymnospermospsida:	
The construction of a concept. Can. J. Bot. 59:	
1539-1542.	
Stewart, W. N. 1983. Palaeobotany and the	
evolution of plants. Cambridge University Press.	
Anatomy and Microtechniques	
Beck, C. B. (2005). An Introduction to Plant	
structure and Development. Cambridge University	
Press.	
Esau, K. (1977) Anatomy of Seed Plants. 2nd	
edition. John Wiley & Sons Fahn, A. (1990) Plant	
Anatomy. 4th edition. Butterworth-Heinemann Ltd	
Mauseth, J. D. (1988) Plant Anatomy. The	
Benjamin Cummings Publishing Co.	
Raghavan V. (1999) Developmental Biology of	
Flowering Plants. Springer. Dickison, W. C. (2000)	
Integrative Plant Anatomy, Academic Press.	
Miksche, J. P. (1976). Botanical Microtechnique	
and Cytochemistry. Iowa State University Press.	
and Cytoenennistry. Iowa State Oniversity 11088.	

Gahan, P. B. (1984) Plant Histochemistry.	
Academic Press.	
Jensen, W. A. (1962) Botanical Histochemistry.	
WH Freeman & Company. Johansen, D. A. (1940)	
Plant Microtechnique. McGraw Hill.	
Khasim, S. M. (2002) Botanical Microtechnique:	
Principles and Practice. Capital Publishing	
Company.	
Krishnamoorthy K. V. (1999) Methods in Cell Wall	
Cytochemistry. C.R.C. Press.	
Pearse, A. G. E. (1980) Histochemistry, Theoretical	
and Applied. 4th Edition, Vol. 1 & 2. Churchill	
Livingstone.	
Sanderson, J. B. (1994). Biological	
Microtechnique. Bios Scientific Publishers.	

Course Code& Title	PRACTICAL 2: MSPSC01DSC06 GENETICS, MYCOLOGY AND PLANT PATHOLOGY	Module Outcome
Course Objectives	To learn about major pathogen groups that infect plants To analyse the impact of plant diseases on food security and ecosystems Apply quantitative problem-solving skills to genetics problems and issues.	
Module 1 36 hrs	Genetics: Independent assortment-Systems for solving dihybrid crosses. Genetic Interactions-Two factor interactions- Epistatic interactions-Non Epistatic Interactions- Multiple allelism and Quantitative genetics. Linkage and chromosome Mapping,Tetrad analysis in Ascomycetes-Recombination Mapping with Tetrads The Binomial and Chi square distributions- Testing genetic ratios. Genetics of Microorganisms-Problems on prokaryotic chromosome mapping Population genetics- Calculating gene frequencies	The students will be able to apply the basic principles of genetics for genetic improvement of plants.
Module 2 20 hrs	 Mycology 1. Plant disease symptoms: recognition and identification 2. Isolation of pure culture of a fungal plant pathogen from a diseased plant. 3. Application of Koch's postulate 4. Preparation of culture media 5. Isolation of fungi from soil by dilution-plate method. 6. Isolation of fungi from dung. 	The students will be able to recognize the host and pathogen interaction
Module 3 20 hrs	Study of morphology and anatomy of the reproductive structures of the following genera of fungi: Phytophthora, Pythium, Albugo, Pilobolus, Glomus, Mucor, Rhizopus, Saccharomyces, Taphrina, Ascobolus, Xylaria, Trichoglossum, Phomopsis, Drechslera, Aspergillus, Penicillium,	The students will get a knowledge on disease forecasting and management.

		[]
	Alternaria, Cercospora, Fusarium, Tremella,	
	Auricularia, Puccinia.	
Module 4		The students will be
14 hrs	Plant pathology	able to analyze the
	1. Study of the symptoms and signs of the	plant-pathogenic
	following plant diseases in the laboratory and in	interaction and
	the field and identification of the pathogens:	implement the disease
	abnormal leaf fall of rubber, coffee rust,	management
	plumeria rust, blister-blight of tea, quick wilt of	techniques in the fields.
	pepper, white rust of amaranth, Cercospora leaf-	-
	spot of okra, powdery mildew of any locally	
	available crop, rice blast, brown spot of rice,	
	whip-smut of sugar cane, soft rot of carrot,	
	sesamum phyllody, cassava mosaic.	
	2. Molecular diagnostics of plant-pathogen using	
	PCR	
	3. Detection of plant virus using ELISA	
REFERENCES	References	
	Kowles R. Solving Problems in Genetics.	
	Springer.	
	Sambamurthy A. V. S. S. Genetics. Narosa	
	Publishing House.	
	Brooker R. J. Genetics: Analysis and Principles.	
	Addison Wesley Longman Inc.	
	Hedrick P. W- Genetics of Populations. Jones	
	and Bartlett Publishers. Griffiths A. J. F.,	
	Gelbbart W. M., Lewontin R. C., Miller J. H	
	Modern Genetic Analysis. W.H. Freeman &	
	Company.	
	Dabholkar A. R. Elements of Biometrical	
	Genetics. Concept Publishing Company.	
	Frankel O. H. and Bennet E. Genetic Resources	
	in Plants. Blackwell. Hotter P. Textbook of	
	Genetics. Ivy Publishing House.	
	Satpathy G. C. Genetics. Kalpaz Publications.	
	Joshi R. M. Biosafety and Bioethics. Isha Books.	
	Pagano M. and Gauvreau K. Principles of Biostatistics, Duxbury	
	Biostatistics. Duxbury.	
	Panse V. G. and Sukhatme, P. V. Statistical	
	Methods for Agricultural Workers. ICAR.	
	Rangaswamy R. A Text Book of Agricultural	
	Statistics. New Age International Publishers.	

Jasra P. K. Biostatistics. Krishna Prakashan	
Media (P) Ltd	
Mycology and plant pathology	
Alexopoulos, C. J. 1962. Laboratory manual for	
Introductory Mycology. Burgess Pub. Co.	
Beck, J. V. et al. 1968. Laboratory Manual for	
General Microbiology. Burgess Pub. Co.	
Koneman, E. W. 1985. Practical Laboratory	
Mycology. Williams & Wilkins.	
Pollack, R. A. et al. 2004. Laboratory Exercises	
in Microbiology. Wiley.	
Rangaswami G. 1999. Diseases of crop plant of	
India, 4th ed. Prentice Hall of India.	
Roberts, G. 1979. Mycology Laboratory	
Procedure Manual. Mayo Clinic.	