

(Abstract)

M Sc Nanoscience & Nanotechnology Programme at Dept.of Chemistry, School of Chemical Sciences, Swami Ananda Theertha Campus, Payyanur - Revised Scheme & Syllabus - Approved-Implemented w.e. f.2023 admission- Orders Issued

ACAD C/ACAD C3/23802/2023

ACADEMIC C SECTION

Dated: 20.12.2023

Read:-1. UO No ACAD C/ ACAD C3/22373/2019 dated 12/09/2023

2. Circular No dated ACAD C/ ACAD C3/22373/2019 dated 12/09/2023

3. Email dated 24/11/2023 from the Coordinator, Nanoscience & Nanotechnology-Dept of Chemistry, SAT Campus, Payyanur

4. Email dated 07/12/2023 from the Coordinator, Nanoscience & Nanotechnology-Dept of Chemistry, SAT Campus, Payyanur

5. Minutes of the meeting of the Department Council dated 09/11/2023

ORDER

1.The revised Regulations for Post Graduate Programmes under Choice Based Credit and Semester System in the University Teaching Departments/ Schools were implemented w.e.f 2023 admissions vide paper read 1 above

2. As per paper read 2 above, Heads of all Teaching Departments were requested to submit the revised Syllabus in accordance with the approved Regulations along with a copy of the Department Council Minutes.

3. As per paper read 3 above, the Co-ordinator, Nanoscience, Department of Chemistry, School of Chemical Sciences, SAT Campus, Payyanur submitted the Scheme and Syllabus of M.Sc Nanoscience & Nanotechnology Programme to be implemented in the University Teaching Department w.e.f 2023 admissions, prepared on the basis of workshop held participating subject expert Prof N Ponpandian, Dept of Nanoscience & Technology, Bharathiar University, Coimbatore , who served as the External Expert as well as Resource Person for the online workshop on

Curriculum Revision of M.Sc Nanoscience & Nanotechnology Programme 5. Department Council vide the paper read 5 above approved the aforementioned scheme and syllabus of M.Sc Nanoscience & Nanotechnology Programme to be implemented in the Dept. of Chemistry at the School of Chemical Sciences of the University w.e.f.2023 admission.

6. The Vice Chancellor, after considering the matter in detail and in exercise of the powers of the Academic Council conferred under section 11(1), Chapter III of Kannur University Act 1996, approved the revised Scheme & Syllabus of M.Sc Nanoscience & Nanotechnology Programme and accorded sanction to implement the same in the Department of Chemistry, School of Chemical Science, SAT Campus, Payyanur, subject to reporting to the Academic Council.

7. The revised Scheme and Syllabus of M.Sc Nanoscience & Nanotechnology Programme under CBCSS implemented in the Department of Chemistry, School of Chemical Sciences, SAT Campus, Payyanur with effect from 2023 admission, is appended and uploaded in the University website (www.kannuruniversity.ac.in)

8. Orders are issued accordingly.

Sd/-Narayanadas K DEPUTY REGISTRAR (ACAD) For REGISTRAR

To:

1. Head, Department of Chemistry, SAT Campus, Payyanur 2. Convenor, Curriculum Committee

3. Programme Coordinator, Nanoscience & Nanotechnology

Copy To: 1.PS to VC/ PA to PVC/ PA to R

- 2. To Examination Branch (through PA to CE)
 - 3. EP IV/ EXC I

3

Pin-670

KANNUP

4. Computer Programmer

Webmanager (to publish on the website)
 SE/DE/EC

KANNUR UNIVERSITY

Scheme and Syllabus

for

M.Sc. PROGRAMME

in

Nano science and Nano technology

Choice Based Credit and Semester System

w.e.f 2023 Admission

School of Chemical Sciences

KANNUR UNIVERSITY

Swami AnathaTheertha Campus

Edat P.O 670327, Kannur

September 2023

M.Sc. DEGREE PROGRAMME IN NANOSCIENCE AND NANOTECHNOLOGY

Under Choice Based Credit and Semester System)

(Effective from 2023 Admission)

About the Department

The School of Chemical Sciences and school of Pure and Applied Physics was established in 2002 and is housed at the Payyanur Campus of the University located at Edat, Payyanur. The School is offering M.Sc Chemistry (Material Science), MSc Nanoscience and Nanotechnology, a Joint Programme M.Sc. Chemistry (Nanoscience and Nanotechnology) MG University Kottayam, Ph.D. in Chemistry, and Biochemistry. The pattern of M.Sc. programme pattern is of Choice based Credit and Semester System consisting of four semesters including one semester project work. The M.Sc Chemistry (Material Science) and M.Sc. Chemistry (Nanoscience and Nanotechnology) programmes are equivalent to MSc Chemistry of Kannur University. The School of Chemical Sciences and Physics are having an excellent Library with latest editions of textbooks, reference books and relevant journals in chemistry, Physics. nanoscience and material science. Library also providing internet facility to students. Fourth semester M.Sc. students carry out their project works in reputed national Institutes.

1	The MSc programme shall be offered in four semesters during a period of two academic
	years. Each semester will have 17-18 weeks duration. The minimum duration for
	completion of the programme is four semesters. The maximum period for the completion
	of the programme is eight semesters.
2	The programme is offered at the School of Chemical Sciences, Swami Anantha Theertha
	Campus of Kannur University situated at Edat, Payyanur.
3	A total of 80 credits shall be the minimum for successful completion of the course in which
	a minimum of 60 credits for core course and 12 credits for electives are mandatory. Those
	who secure only minimum credit for core/ elective subjects has to supplement the
	deficiency for obtaining the minimum total credits required for successful completion of
	the program from the other divisions.

4	The number of periods allotted per week for a topic is considered as its credit. For practical
	three hours is considered as one credit. Elective courses will be offered depending on the
	availability of the teaching staff/resource person at that time. At least 6 students have to
	register for an offered elective course.
5	No students shall register for more than 24 credits and less than 16 credits per semester.
	The duration of the course shall extend to more than two years (maximum four years) for
	the students securing less than 12 credits in a semester.
	Programme details:
1	In first and second semester, there will be 4 core courses and one elective course. In Third
	semester there will be 4 core courses and 2 elective courses each. In Fourth semester, there
	will be 3 core courses and 2 elective courses. An open elective course is offered to other
	Department students in the third semester. A value-added course is offered in the second
	semester.
2	During the fourth semester, the students will have to visit a Research Institute of National
	repute to have an idea about the current research activities. The report of the same may be
	submitted to the Head of the department for valuation.
3	During the fourth semester, each student shall carry out project work in any branches of
	Nano Science for a period of not more than six months under the supervision of a teaching
	staff of the Department nominated by the Head of the department. The departmental
	council shall make decisions regarding the project details.
4	A student will have to present one seminar (two credit) in the fourth semester. The topics
	of the seminar will be chosen by the student in concern with his/her tutor.
5	Attendance is compulsory for each course and the minimum requirement for appearing for
	the end semester examination shall be as per general regulations of M.Sc. programme of
	the University.
6	Open elective means an elective course which is available for students of all programmes,
	including students of the same department. Students of other Department will opt these
	courses subject to fulfilling the eligibility of criteria as laid down by the Department
	offering the course.

7 One hour per week is allotted for tutorial classes. Each student will be assigned to a teaching staff of the department as his/her advisor.

	PROGRAMME OUTCOMES
DO 1	Critical Thinkings Take informed actions often identifying the accounting that forms our
PUT	Critical Ininking: Take informed actions after identifying the assumptions that frame our
	thinking and actions, checking out the degree to which these assumptions
	are accurate and valid, and looking at our ideas and decisions (intellectual,
	organizational, and personal) from different perspectives.
PO2	Problem Solving: Identify, formulate, conduct investigations, and find solutions to
	problems based on in-depth knowledge of relevant domains.
PO 3	Communication: Speak, read, write and listen clearly in person and through electronic
	media in English/language of the discipline, and make meaning of the
	world by connecting people, ideas, books, media and technology.
PO 4	Responsible Citizenship: Demonstrate empathetic social concern, and the ability to act
	with an informed awareness of issues.
PO 5	Ethics: Recognize different value systems including your own, understand the moral
	dimensions of your decisions, and accept responsibility for them.
PO 6	Self-directed and Life-long Learning: Acquire the ability to engage in independent and
	life-long learning in the broadest context socio- technological changes.
PO 7	Environmental Sustainability and Global Perspective: Develop an understanding of
	global standards to foster legal environment. Learn and practice to
	critically analyze the legal issues from local, national and international
	concerns.
	PROGRAMME SPECIFIC OUTCOMES
At the e	nd of the Programme student will be able to:

PSO1	Explain the fundamentals and opportunities of Nanoscience and Nanotechnology.
PSO2	Analyze different theories of chemistry for application in the field of nanomaterial development.
PSO3	Perform a critical analysis of benefits and potential negative impacts of nanotechnology on environment and society.
PSO4	Design, synthesize and characterize the advanced nanomaterials for various applications.
PSO5	Demonstrate skills required according to the demand/need of changing trends of modern Industries.

SEMESTER I

No	Course Code	Торіс	Contact Hours/week			Marks	Credits						
			L	T/S	Р	ESE	CE	Total					
	CORE COURSES												
1	MSNST01DS C01	Quantum and Statistical Mechanics	4	-	-	60	40	100	4				
2	MSNST01DS C02	Structure and Bonding in Solids	4	-	-	60	40	100	4				
3	MSNST01DS C03	Fundamentals of Nanoscience	4	-	-	60	40	100	4				
4	MSNST01DS C04	Environmental Impacts of Nanotechnology	4	-	-	60	40	100	4				

5	MSNST01DS C05	Nano Lab – I	-	-	12	60	40	100	4
	Το	tal		28				500	20

SEMESTER II

No	Course Code	Торіс	Contact Hours/week			Marks ES CE Total			Cr edi ts			
			_	170	-	E						
	CORE COURSES											
6	MSNST02DS C06	Design and Synthesis of Nanomaterials	4	-	-	60	40	100	4			
7	MSNST02DS C07	Characterization Techniques for Nanomaterials	4	-	-	60	40	100	4			
8	MSNST02DS C08	Nano Lab – II	-	-	12	60	40	100	4			
Total for core courses				20				300	12			
	ELECTIVE COURSES											

9	MSNST02DS E01	Elements of Physical Chemistry							
10	MSNST02DS	Nanoscale Magnetic							
	E02	Materials and Devices							
11	MSNST02DS	Nanomaterials for	2x3	-	-	60	40	100	6
	E03	Energy and							
		Environment							
12	MSNST02DS	Nanomaterials in							
	E04	Everyday Life							
13	MSNST02DS E05	Polymer Science							
14	MSNST02DS E06	Nanopharmaceuticals							
	l	INTERDISCIPI	LINAR	Y COU	RSES			1	1
15	MSNST02ID	Composite Materials							
	C01	(offered to other							
		departments)							
			2	-	-	60	40	100	2
16	MSNST02ID	Nanobiomaterials							
	C02	(offered to other							
		departments)							
17	MSNST02ID	Nanotechnology and							
	C03	Waste Management							

		(offered to other departments)								
		To be obtained from other departments								
		SKILL ENHANO	CEMEN	NT COU	JRSES	5			I	
18	MSNST02SE C01	Scientific Analysis and Data Collection (offered to other departments)	2	_	_	60	40	100	2	
19	MSNST02SE C02	Technical Writing (offered to other departments)								
20	MSNST02SE C03	Laboratory Skills and Practices (offered to other departments)								
	-									
	VALUE ADDED COURSES									
	MSNST02VA C01	Certificate course in Advanced Techniques for Characterization of Materials (Value -	2	-	-	60	40	100*	2*	

		added course)								
	Т	otal		32				800	22	
* Not	* Not to be added to the total marks and credits									

SEMESTER III

No	Course Code	Торіс	ContactMarksHours/week		Marks			Cre dits				
			L	T/S	Р	ESE	CE	Total				
				110	-	202	02	10001				
CORE COURSES												
21	MSNST03DS C09	Semiconductor Nanomaterials and Nanolithography	4	-	-	60	40	100	4			
22	MSNST03DS C10	Carbon Nanostructures	4	-	-	60	40	100	4			
23	MSNST03DS C11	Nanobiotechnology	4	-	-	60	40	100	4			
24	MSNST03DS C12	Research Project	-	-	12	60	40	100	4			
25	MSNST03DS C13	Industrial Visit	-	-	-	-	-	100	2			
	Total for core courses			24				500	18			

		ELECTIV	E CO	URSE	S				
26	MSNST03DS E07	Nano Medicine and Drug Delivery Systems							
27	MSNST03DS E08	Organic Nanomaterials	1x3	-	-	60	40	100	3
28	MSNST03DS E09	Nanophotonics							
	MULTIDISCIPLINARY ELECTIVE COURSES								
		Multi Disciplinary Elective course (to be obtained from other departments)	4	-	-	60	40	100	4
29	MSNST03M DC01	Introduction to Nanotechnology (Multidisciplinary Elective course Offered to Students from other Departments of Kannur University)							
Total				31				700	25

SEMESTER IV

No	Course Code	Topic	Contact	Marks	Credit

			Hours/week				S		
			L	T/S	Р	ESE	CE	Total	
		CORE	COUR	RSES					
30	MSNST04DS C14	External Research Project		-	30	60	40	100	10
	Total for o	core courses		30				100	10
		ELECTIV	E CO	URSE	S				
31	MSNST04DS E10	Industrial Significance and Applications of Nanotechnology	2 x3	-	-	60	40	200	6
32	MSNST04DS E11	Nanoelectronics							
33	MSNST04DS E12	Nanotechnology- Society, Ethics and Legal Aspects							
34	MSNST04DS E13	Prospects and Challenges of Nanotechnology							
35	MSNST04DS E14	Nanosensors and their Applications							

36	MSNST04DS E15	Nanorobotics				
		Total	36		300	16

	Grant Total	
Marks: 2300	Core Credits: 60	Elective Credits: 23

Course code- MSNST: Master of Science Nano science and Nano Technology; DSC: Discipline Specific Core; DSE: Discipline Specific Elective; MDC: Multidisciplinary Course: IDC: Interdisciplinary Course

	Semester I							
	Core Course							
(Course Code: Course Name:							
MSNST01DSC01 Quantum and Statistical Mechanics						hanics		
		Cou	rse Descri	iption				
This course give	s a broad, theo	oretical trea	atment of c	classical me	chanics. 7	This course	also deals	
with basic prine	ciples and the	ories of q	uantum m	echanics an	nd statisti	cal mechai	nics. This	
course is essenti	al to understa	nd the diffe	erent conc	epts in quar	ntum and	statistical r	nechanics	
and their application	ation to simple	e systems.						
		Cou	rse Objeo	ctives				
1 To study the	equilibrium ai	nd motion	of bodies	subject to f	orces			
2 To provide the	ne theoretical f	framework	to describ	be and pred	ict the mo	tions of bo	dies.	
3 To explore	the statistical	methods	and pro	bability th	eory to	large asser	nblies of	
microscopic	entities.							
4 To have a cle	ar idea on dif	ferent type	s of statis	tics.				
5 To understan	d the basics of	f quantum	mechanic	s and apply	to simple	systems.		
Cred	Credit Teaching Hours Assessment					ıt		
L/T P/I	Total	L/T	P/I	Total	CE	ESE	Total	
4 0	4	72	0	72	40	60	100	
L/T: Lecture/	I/T·Lecture/Tutorial·P/I·Practical/Internship·CE·Continuous Evaluation ESE·End							

Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Apply basic concepts of Classical Mechanics to different systems.
C02	Formulate equations of motion for complicated mechanical systems of classical

	mechanics.
C03	Show an analytic ability to solve problems relevant to statistical mechanics.
C04	Apply the basis of quantum mechanics to simple systems.
C05	Construct the Schrödinger equations for simple systems.

Course outcomes based on revised Blooms taxonomy

Module	Course Contents	No of hrs				
1.0	Classical Mechanics	18hrs				
1 1	Pasia Principles of Classical Machanics Conservation laws Cor	accuration of				
1.1	Basic Principles of Classical Mechanics – Conservation laws, Col					
	Angular Momentum and Energy - Generalized and Cyclic Co-ordinates -					
	Limitations of Newton's Law -Constraints-classification of constr	aints.				
1.2	Hamilton's equations from Variational Principle - D' Alember	ts Principle-				
	Hamilton's principle – Lagrange Equations-Derivation of	Lagrange's				
	Equations from D' Alemberts Principle and Hamilton's Principle.					
1.3	Simple Application of Lagrangian Equation – Motion of one part	icle in space				
	using cartesian and plane polar coordinates-Atwood's machine-	Read sliding				
	on a rotating wire	Dead shaing				
1.4	Hamiltonian's Canonical Equations of Motion-Compound Pendulum- Simple					
	Pendulum- Particle in a Central Field of Force.					
Suggested Reading Specific to the module						
1.1	Classical Mechanics, Kibble, T. W.; Berkshire, F. H. Imperial Co	ollege Press,				
	(2004).					
1.2	Classical Mechanics, Taylor, John., University Science Books, (20	005).				
1.3	Classical Dynamics of Particles and Systems (5th ed.), Ma	arion, Jerry;				
	Thornton, Stephen, Brooks Cole (2003).					
1.4	Classical Mechanics, L.S. Gupta, V. Kumar, and H.V. Shar	rma, Pragati				

	Prakashan Publication (2007)
2.0	Statistical Mechanics 18hrs
2.1	Fundamentals of Statistical Mechanics: Phase Space – Ensembles: Types of Ensembles – Microcanonical, Canonical, Grand Canonical Ensembles - Uses of Ensembles.
2.2	Microstates and Macro States-Calculation of macrostates and microstates for different arrangements. Thermodynamic probability-Distribution and Arrangement of particles
2.3	Stirling's Approximation – Distinguishable and indistinguishable particles- Bosons-Boltzons-Fermions-Number of possible arrangements.
2.4	Classical statistics: Maxwell-Boltzmann Distribution Law – Quantum Statistics -Bose-Einstein Distribution Law - Fermi-Dirac Distribution Law – Comparison of the Three Distribution Laws.
	Suggested Reading Specific to the module
2.1	Statistical Mechanics (4th ed.), Pathria, P. K.; Beale, Paul, United States: Elsevier/Academic Press (2021).
2.2	Introductory Statistical Mechanics, Bowley, Roger and Sanchez, Mariana, Oxford University Press (2000).
2.3	Statistical Mechanics 2nd Edition by Huang, Wiley India (1988)
2.4	Elements of statistical Thermodynamics, L.K. Nash, Addision Wesley Publishing
3.0	Quantum Mechanics – I 18hrs
3.1	Basis of Quantum Mechanics – Classical mechanics and its limitations –need of quantum mechanics. De Broglie's Concept – Operators – Algebra of operators, Commutator, Linear, Laplacian, Hamiltonian and angular

	momentum operators.						
3.2	Hermitian property- Heisenberg's Uncertainty Principle -Wave Function-						
	Normalized - Orthogonal and orthonormal Wave Function - Eigen values and						
	Eigen Function-Postulates of quantum mechanics- time dependent and time						
	independent Schrodinger equations.						
3.3	Quantum mechanics of translational motion- Applications to simple systems-						
	Particle in a box-Three-dimensional box- rectangular box-Cubical Box-						
	Degeneracy-						
3.4	Quantum mechanics of vibrational motion- one-dimensional harmonic						
	oscillator - Hermite polynomial- comparison of classical and quantum						
	mechanical results.						
	Suggested Reading Specific to the module						
	Suggesten Renning Specific to the mounte						
3.1	Introduction to Quantum Mechanics, L. Pauling and W.B. Wilson, McGraw						
	Hill.						
3.2	Quantum chemistry, I. N. Levine, Pearson Education						
3.3	David J. Griffiths, Darrell F. Schroeter, Introduction to Quantum Mechanics						
	(Third edition), Cambridge University Press India Pvt Ltd, (2019)						
3.4	(Third edition), Cambridge University Press India Pvt Ltd, (2019) Quantum Mechanics in Chemistry, M. W. Hanna, Benjamin, 3rd Edn.						
3.4 4.0	(Third edition), Cambridge University Press India Pvt Ltd, (2019)Quantum Mechanics in Chemistry, M. W. Hanna, Benjamin, 3rd Edn.Quantum Mechanics – II18hrs						
3.4 4.0	 (Third edition), Cambridge University Press India Pvt Ltd, (2019) Quantum Mechanics in Chemistry, M. W. Hanna, Benjamin, 3rd Edn. Quantum Mechanics – II 18hrs Quantum mechanics of Hydrogen atoms- The wave equation in spherical polar. 						
3.4 4.0 4.1	 (Third edition), Cambridge University Press India Pvt Ltd, (2019) Quantum Mechanics in Chemistry, M. W. Hanna, Benjamin, 3rd Edn. Quantum Mechanics – II 18hrs Quantum mechanics of Hydrogen atoms- The wave equation in spherical polar coordinates - Energy Figen value- Solution of the R θ Ø equations- I aguerre 						
3.4 4.0 4.1	 (Third edition), Cambridge University Press India Pvt Ltd, (2019) Quantum Mechanics in Chemistry, M. W. Hanna, Benjamin, 3rd Edn. Quantum Mechanics – II 18hrs Quantum mechanics of Hydrogen atoms- The wave equation in spherical polar coordinates - Energy Eigen value- Solution of the R,θ,Ø equations- Laguerre and Associated Laguerre Polynomials 						
3.4 4.0 4.1	 (Third edition), Cambridge University Press India Pvt Ltd, (2019) Quantum Mechanics in Chemistry, M. W. Hanna, Benjamin, 3rd Edn. Quantum Mechanics – II 18hrs Quantum mechanics of Hydrogen atoms- The wave equation in spherical polar coordinates - Energy Eigen value- Solution of the R,θ,Ø equations- Laguerre and Associated Laguerre Polynomials. 						
3.4 4.0 4.1 4.2	 (Third edition), Cambridge University Press India Pvt Ltd, (2019) Quantum Mechanics in Chemistry, M. W. Hanna, Benjamin, 3rd Edn. Quantum Mechanics – II 18hrs Quantum mechanics of Hydrogen atoms- The wave equation in spherical polar coordinates - Energy Eigen value- Solution of the R,θ,Ø equations- Laguerre and Associated Laguerre Polynomials. Angular Momentum – Total Angular Momentum Operators – Commutation 						
3.4 4.0 4.1 4.2	 (Third edition), Cambridge University Press India Pvt Ltd, (2019) Quantum Mechanics in Chemistry, M. W. Hanna, Benjamin, 3rd Edn. Quantum Mechanics – II 18hrs Quantum mechanics of Hydrogen atoms- The wave equation in spherical polar coordinates - Energy Eigen value- Solution of the R,θ,Ø equations- Laguerre and Associated Laguerre Polynomials. Angular Momentum – Total Angular Momentum Operators – Commutation Relationship with Components. 						
3.4 4.0 4.1 4.2 4.3	 (Third edition), Cambridge University Press India Pvt Ltd, (2019) Quantum Mechanics in Chemistry, M. W. Hanna, Benjamin, 3rd Edn. Quantum Mechanics – II 18hrs Quantum mechanics of Hydrogen atoms- The wave equation in spherical polar coordinates - Energy Eigen value- Solution of the R,θ,Ø equations- Laguerre and Associated Laguerre Polynomials. Angular Momentum – Total Angular Momentum Operators – Commutation Relationship with Components. Need of approximate methods in quantum chemistry- Variation Method- 						

	method. Linear Variation functions.
4.4	Perturbation Method-First order perturbation-Correction to energy- Correction
	to wavefunction-Application of perturbation theory to simple systems.
	Suggested Reading Specific to the module
4.1	Fundamentals of Ouantum chemistry, R Anantharaman, Macmillan,
-	
4.2	Molecular Quantum Mechanics, P.W. Atkins, R.S. Friedmann, Oxford
	University Press.
4.2	Quantum chamistry I N Laving Decrease Education
4.3	Quantum chemistry, I. N. Levine, Pearson Education
ΔΔ	Introductory Quantum chemistry A K Chandra Tata McGraw Hill
7.7	Introductory Quantum enemistry, M.K. Chandra, Tata McOraw IIII.

Core Compulsory Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Classical Mechanics, L.S. Gupta, V. Kumar, and H.V. Sharma, Pragati Prakashan Publication (2007).
- 2 Statistical Mechanics, by Gupta and Kumar, Pragati Prakashan Publication.
- 3 Quantum Mechanics Satya Prakash and C. K Singh Kedar Nath and Ram Nath Co
- 4 Quantum Mechanics G. Aruldhas Princitan Hall of India, New Delhi.
- 5 Quantum chemistry, R K Prasad, New Age International

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Classical Mechanics, H. Goldstein, Charless Poole and John Safco, Addison Wesley (2000)
- 2 Modern Physics and Quantum Physics E.E Anderson, Macmillan Co., India
- 3 Quantum chemistry, D.A. McQuarrie, University Science Books.

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Construct the Lagrangian equation of motion from D'Alemberts principle.
- 2 Discuss the application of lagrangian equation.
- 3 Compare the salient features of both Bose-Einstein statistics and Fermi- Dirac statistics.
- 4 Evaluate the macrostates and microstates for tossing three coins.
- 5 Setup and solve Schrodinger equation for a particle in 1-D box and normalize the wave function
- 6 Apply the Quantum mechanical treatment to the simple harmonic oscillator.
- 7 Use perturbation method to find the first order correction in energy and wave function if a particle in 1D box is subjected to a uniform electric field of strength F.
- 8 Discuss the various approximation method in quantum mechanics

Semester I					
Core Course					
Course Code:	Course Name:				
MSNST01DSC02 Structure and Bonding in solids					
Course D	escription				
The course is divided into four modules. Each	module describes the concepts in solid state.				
The various theories related to the structure and bonding in molecules - VSEPR, CFT and					
M.O, classifications of solids and their related theories are elaborately considered. Ionic solid					
formation, its type with examples are also included in module one. Basics of crystallography,					
Crystal systems in 2D and 3D, symmetry elements and operations present in crystal system,					
symmetry of molecules, crystal plane representation are included. Different types of					
imperfections found in solids, crystal growth mechanisms, theories related to growth, growth					
kinetics, different growth methods and deformations during growth are included in the third					

module. Designing of new materials, structural rearrangements, structural distortions are included in fourth module.

Course Objectives

1. To understand the fundament al theories in soli d state - VB, CFT and MO Theory.

2. To understand the concept of bonding in solids and how it determines their properties.

- 3. To develop an understanding of different crystal systems, their structure and symmetry.
- 4. To provide knowledge related to the mechanism and conditions of crystal growth, different methods involved and the types of imperfections and deformations occurring during growth.

Credit			Tea	Teaching Hours			Assessment	
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
4	0	4	72	0	72	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Remember the bonding concepts and postulates of various theories.
C02	Explain and understand the shape of the molecule, hybridization and their
	structural distortions.
C03	Understand different crystal system, lattices in 3D and 2D, planes and the
	symmetry present in crystals and molecules.
C04	Predict the symmetry elements present in molecules and the point group.
C05	Understand the imperfections formed in crystals during growth, crystal
	transformations, deformations etc.

Course outcomes based on revised Blooms taxonomy

Module	Course Contents	No. of Hrs
1.0	Chemical Bonding	22 hrs
1.1	Types of chemical bonds, the octet rule, Wave Mechanical picture	of chemical
	bonding. Ionic solids, lattice energy, Born- Lande equation, typical	l structures –
	AB, AB ₂ ,A ₂ B type, bonding considerations, radius-ratio concept	pt, electrical
	neutrality, bond types- ionic, covalent metallic and Vander Waals i	interactions.
1.2	Structural distortions, types, examples, consequence of d-electron c	onfiguration
	on structure.	
1.3	VSEPR theory, shape of the molecules, hybridization, crystal	field theory,
	splitting in Oh, Td, Sq complexes, CFSE calculation, MO	theory, MO
	description of select ML ₆ ,(Octahedral and bondi	ng); ML4 (
	Tetrahedral, square-planar) - based structures, band structure.	
1.4	Characteristic properties of metals, crystalline and amorph	nous solids,
	Classification of solids into insulators, semiconductors, conducto	rs and super
	conductors, Theories of bonding in solids - The free electron theor	ry, Band and
	Zone Theories, the Kronig-Penny model.	
	Suggested Reading Specific to the module	
1.1	Atomic structure and chemical Bond, Manas Chanta Publisher: N	AcGraw-Hill
	Inc.,US (1 December 1974) ISBN-10: 0070965110	
1.2	Concise Inorganic chemistry, J.D.Lee Publisher: Wiley; 5th edition	n edition (18
	December 1998) ISBN-10: 0632052937	
1.3	Inorganic Solids, D.M. Adams, John Wiley&Sons, NewYork, 1974	4
1.4	Inorganic Chemistry, G. Wwfsberg Unit IV Publisher: Pearson; 4	4 edition (31
	May 2012) ISBN-10: 0273742752	

2.0	Crystallography 16 hrs
2.1	Periodicity in crystals, translational periodicity, representation of a lattice,
	notations of planes in a lattice, Weiss indices, miller indices, relationship
	between planes- interplanar distance and angle between planes.
2.2	Crystal types, two and three-dimensional crystal lattices.
2.3	Symmetry elements - proper and improper rotation axes, screw axes, glide
	planes. Symmetry groups- point groups, Schonflies system and Hermann -
	Mauguin system. categories of crystal, plane groups, space lattices, space
	groups, super groups and subgroups.
2.4	Point groups in molecules - C _{nv} , D _{nh} , C _v , D _h , C _{nh} , C ₁ , C _s , C _i
	Suggested Reading Specific to the module
2.1	Principle of Physical Chemistry, B.R. Puri,L.R. sharma, Madan. S. Pathania.
2.2	Elements of solids state physics, J.P. Srivastava, Publisher: Prentice Hall India
	Learning Private Limited; 4th Revised edition edition (17 December 2014)
	ISBN-10: 8120350669
2.3	Introduction to solids – L.V. Azaroff, Publisher: McGraw Hill Education;
	New edition edition (14 June 2001) ISBN-10: 0070992193
2.4	Chemical application of group theory, F.A. Cotton.
3.0	Imperfections in solids20 hrs
3.1	Types of Imperfections - classification. Point defects - Schottky defects, Frenkel
	defect, Disordered Crystal. Line defects - Dislocation types, Dislocation theory.
	Plane defect - Large- angle boundaries, Small - angle boundaries, stacking
	faults. Colour centers in alkali halides.
3.2	Crystal growth, types- growth from melt (Bridgman, Czochralski, Verneuil,
	Zone Melting, Kyropoulos, Skull Melting Process), growth from solution
	(hydrothermal, low temperature solution growth), growth from vapour (CVD,

	PVD), Solid-state single crystal growth.
3.3	Twinning - Growth, Deformation and transformation twins, twin laws
	Velocity, Theories and Mechanism of crystal growth. Twinning - Growth,
	Deformation and transformation twins.
3.4	Transformations in Crystals - Equilibrium transformations, Kinetics of
	transformations Elastic deformation and plastic deformation in crystals.
	Suggested Reading Specific to the module
3.1	Principle of Physical Chemistry, B.R. Puri,L.R. sharma, Madan. S. Pathania.
3.2	Introduction to crystal growth Principles and Practice, H.L. Bhat.
3.3	Introduction to solids – L.V. Azaroff, Publisher: McGraw Hill Education;
	New edition edition (14 June 2001) ISBN-10: 0070992193
3.4	Introduction to solids – L.V. Azaroff, Publisher: McGraw Hill Education;
	New edition edition (14 June 2001) ISBN-10: 0070992193
4.0	Design of New Materials 14 hrs
4.0 4.1	Design of New Materials 14 hrs Design of new materials – Chemical bonding considerations- chemical nature
4.0 4.1	Design of New Materials 14 hrs Design of new materials – Chemical bonding considerations- chemical nature of substituents and dopants 14 hrs
4.0 4.1 4.2	Design of New Materials 14 hrs Design of new materials – Chemical bonding considerations- chemical nature of substituents and dopants ns ² lone pair influence, local structural rearrangements, structural distortions,
4.0 4.1 4.2	Design of New Materials14 hrsDesign of new materials – Chemical bonding considerations- chemical nature of substituents and dopants ns^2 lone pair influence, local structural rearrangements, structural distortions, mixed valence, defect-chemistry tailoring.
4.0 4.1 4.2 4.3	Design of New Materials 14 hrs Design of new materials – Chemical bonding considerations- chemical nature of substituents and dopants ns ² lone pair influence, local structural rearrangements, structural distortions, mixed valence, defect-chemistry tailoring. Pauling rule-application to actual structures, variations in atomic packing-
4.0 4.1 4.2 4.3	Design of New Materials14 hrsDesign of new materials – Chemical bonding considerations- chemical nature of substituents and dopantsns² lone pair influence, local structural rearrangements, structural distortions, mixed valence, defect-chemistry tailoring.Pauling rule-application to actual structures, variations in atomic packing- polymorphism, isomorphism, solid solutions, derivative structures, Alloys,
4.0 4.1 4.2 4.3	Design of New Materials14 hrsDesign of new materials – Chemical bonding considerations- chemical nature of substituents and dopantsns² lone pair influence, local structural rearrangements, structural distortions, mixed valence, defect-chemistry tailoring.Pauling rule-application to actual structures, variations in atomic packing- polymorphism, isomorphism, solid solutions, derivative structures, Alloys, ceramics, composite materials and conducting polymers.
4.0 4.1 4.2 4.3	Design of New Materials 14 hrs Design of new materials – Chemical bonding considerations- chemical nature of substituents and dopants ns² lone pair influence, local structural rearrangements, structural distortions, mixed valence, defect-chemistry tailoring. Pauling rule-application to actual structures, variations in atomic packing-polymorphism, isomorphism, solid solutions, derivative structures, Alloys, ceramics, composite materials and conducting polymers. Suggested Reading Specific to the module
4.0 4.1 4.2 4.3	Design of New Materials 14 hrs Design of new materials – Chemical bonding considerations- chemical nature of substituents and dopants ns ² lone pair influence, local structural rearrangements, structural distortions, mixed valence, defect-chemistry tailoring. Pauling rule-application to actual structures, variations in atomic packing-polymorphism, isomorphism, solid solutions, derivative structures, Alloys, ceramics, composite materials and conducting polymers. Suggested Reading Specific to the module Concise Inorganic chemistry, J.D.Lee Publisher: Wiley; 5th edition edition (18
4.0 4.1 4.2 4.3 4.1	Design of New Materials 14 hrs Design of new materials – Chemical bonding considerations- chemical nature of substituents and dopants ns ² lone pair influence, local structural rearrangements, structural distortions, mixed valence, defect-chemistry tailoring. Pauling rule-application to actual structures, variations in atomic packing-polymorphism, isomorphism, solid solutions, derivative structures, Alloys, ceramics, composite materials and conducting polymers. Suggested Reading Specific to the module Concise Inorganic chemistry, J.D.Lee Publisher: Wiley; 5th edition edition (18 December 1998) ISBN-10: 0632052937

4.2	Concise Inorganic chemistry, J.D.Lee Publisher: Wiley; 5th edition edition (18				
	December 1998) ISBN-10: 0632052937				
4.3	Introduction to solids - L.V. Azaroff, Publisher: McGraw Hill Education;				
	New edition edition (14 June 2001) ISBN-10: 0070992193				

Core Compulsory Readings (Books, Journals, E-sources Websites/ weblinks) List

- Atomic structure and chemical Bond, Manas Chanta Publisher: McGraw-Hill Inc.,US (1 December 1974) ISBN-10: 0070965110
- Concise Inorganic chemistry, J.D.Lee Publisher: Wiley; 5th edition edition (18 December 1998) ISBN-10: 0632052937
- 3 Inorganic Chemistry, G. Wwfsberg Unit IV **Publisher:** Pearson; 4 edition (31 May 2012) **ISBN-10:** 0273742752
- 4 Introduction to solids L.V. Azaroff, **Publisher:** McGraw Hill Education; New edition edition (14 June 2001) **ISBN-10:** 0070992193
- 5 Inorganic Solids, D.M. Adams, John Wiley&Sons, NewYork, 1974
- 6 Materials Science and Engineering, V.Raghavan, PHI L Pvt.Ltd., N.Delhi, 2015

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- Introduction to solid state Physics C. Kittel, Publisher: John Wiley & Sons Inc (23 July 1996), ISBN-10: 0471142867
- Elements of solids state physics, J.P. Srivastava, Publisher: Prentice Hall India Learning
 Private Limited; 4th Revised edition edition (17 December 2014) ISBN-10: 8120350669

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk ASSESSMENT RUBRICS

End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Explain sigma and pi bonding in octahedral complexes using MOT.
- 2 Discuss about the structural distortions observed in transition metal complexes.
- 3 Predict the point groups of benzene, pyridine and 1,3-dichloro benzene.
- 4 Discuss in detail about the crystal systems in 2D and 3D.
- 5 Write a note on atomic imperfections in solids.

Semester I								
Core Course								
	Course Code: Course Name:							
	MSNST01DSC03 Fundamentals of Nanoscience						ice	
			Cou	rse Descri	ption			
The cour	se is divi	ded into f	our modu	les. Each	module de	scribes th	e basic co	ncepts in
nanoscier	ice. The el	ementary of	concepts o	fnanosciei	nce such as	the evolution	tion of the	same as a
branch of	science, s	ize depend	ent proper	ties of nanc	materials	etc. are ela	borately co	nsidered.
The class	ifications	of differen	nt kinds of	nanomater	ials are als	so include	d. The basi	c aspects
of surface	e energy a	nd stabiliza	ation mech	anisms are	also depic	eted in deta	ail.	
			Cou	rse Objec	tives			
1. To ac	quire awa	reness on t	he importa	nce of Na	no-technolo	ogy, Emer	gence of	
Nanos	science an	d technolo	gy and cha	allenges in	Nanotechr	nology.		
2. To gain understanding of physical chemical and mechanical properties of low								
dimensional systems.								
3. To understand the basic science required to know the fundamentals of nanostructures								
and their types.								
4. To give a detailed overview on special nanomaterials.								
5. To provide the basic concepts on surface energy of nanomaterials and its significance.								
	Credit		Tea	aching Ho	urs	1	Assessmen	t
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total

4	0	4	72	0	72	40	60	100
---	---	---	----	---	----	----	----	-----

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Explain the fundamentals and opportunities of Nanoscience and Nanotechnology.
C02	Interpret specific properties of nanomaterials in the Nano-regime
C03	Classify different types of nanostructures based on quantum confinement.
C04	Explain the trends in properties of materials with variation in particle size.
C05	Summarize stabilization mechanisms of nanomaterials.

Course outcomes based on revised Blooms taxonomy

Module	Course Contents	No. of Hrs
1.0	Fundamentals of Nanomaterials	12
1.1	History of Nanotechnology – Major milestones, Feynman's	vision on
	nanoscience & technology,	
1.2	bulk vs nanomaterials. Central importance of nanoscale morpholog	şу
1.3	Nanomaterials in nature- Gecko feet, peacock feather, Blue morp	ho butterfly,
	Lotus effect,	
1.4	clusters and magic numbers- Jellium model, Recent developments	s, challenges
	and future prospects of nanomaterials.	
	Suggested Reading Specific to the module	
1.1	Sharon, Madhuri, ed. History of nanotechnology: from prehistori	c to modern
	times. John Wiley & Sons, 2019.	
1.2	Shah, M. A., and K. A. Shah. Nanotechnology: The Science of Sma	all. Vol. 200.
	Hoboken, NJ: Wiley, 2019.	
1.3	R. Kelsall, I.Hamley and M. Geoghegan, Nanoscale Science and	Technology,
	Wiley, 2005	
1.4	Edelstein, Alan S., and R. C. Cammaratra, eds. Nanomaterial	s: synthesis,
	properties and applications. CRC press, 1998.	
2.0	Size and shape dependent properties of nanomaterials	20

2.1	Size and shape dependent properties, Melting points and lattice constants,
	Surface Tension, density of states, Wettability - Specific Surface Area and Pore
	– Composite Structure -
2.2	Mechanical properties-Hall Ptech and Inverse Hall-Petch Relationships,
	Orowan strengthening etc
2.3	Optical properties of metal nanoparticles: Surface plasmon resonance in-
	various parameters that affect the SPR- application of SPR; Optical properties
	of Semiconductor Nanoparticles: Quantum confinement effect in in
	Semiconductors
2.4	Electrical conductivity: Surface scattering, change of electronic structure,
	Ballistic transport, Coulomb Blockade effect, effect of microstructure.
2.5	Magnetic properties: Single domain structure and superparamagnetism.,
	Ferroelectrics, dielectrics in the nano-regime
	Suggested Reading Specific to the module
2.1	G. Cao and Y.Wang, Nanostructures and Nanomaterials, 2nd Ed., Imperial
	College Press, 2004.
2.2	Chemistry of nanomaterials: Synthesis, properties and applications by CNR Rao
	et.al. Wiley VCH, Verlag Gmbh & Co, Weinheim
2.3	Zhang, Jin Zhong. Optical properties and spectroscopy of nanomaterials. World
	Scientific, 2009.
2.4	Zhang, Jin Zhong. Optical properties and spectroscopy of nanomaterials. World
	Scientific, 2009.
2.5	T. Pradeep, A text book of Nano Science and Technology, Tata McGraw-Hill
	Education, 2012
3.0	Classification of nanomaterials 20
3.1	Classification based on the dimensionality, Zero-dimensional nanostructures:
	metal, semiconductor and oxide nanoparticles.
3.2	One-dimensional nanostructures: nanowires and nanorods, Two-dimensional
	nanostructures: Thin films, Three-dimensional nanomaterials.
3.3	Special Nanomaterials: Carbon base materials like Graphene, fullerenes and
	carbon nanotubes-evolution, synthesis and applications
3.4	Special Nanomaterials: micro and mesoporous materials- synthesis and

	classifications, core-shell structures, organic-inorganic hybrids-classification							
	and methods of synthesis.							
Suggested Reading Specific to the module								
3.1	Robert K, Ian H, Mark G, Nanoscale Science and Technology, John Wiley &							
	sons Ltd.,2005							
3.2	G. Cao and Y.Wang, Nanostructures and Nanomaterials, 2nd Ed., Imperial							
	College Press, 2004.							
3.3	Nanomaterials: An introduction to synthesis, properties and application, Dieter							
	Vollath, WILEY-VCH, 2008							
3.4	Introduction to Nanotechnology - Charles P. Poole Jr. and Franks. J. Qwens							
4.0	Stabilization of nanomaterials20							
4.1	Surface science for nanomaterials, surface energy, stabilization mechanisms,							
	Wulff plot, Surface roughening							
4.2	electrostatic stabilization - Surface charge density, Nernst Equation, electric							
	double layer, Van der Waals attraction potential, Debye-Huckel Screening							
	strength. Interaction between nanoparticles – DLVO Theory							
4.3	Steric stabilization- effects of solvents and polymers-electrosteric stabilization							
4.4	nucleation and growth of nuclei, critical radius, homogenous and heterogeneous							
	nucleation							
-	Suggested Reading Specific to the module							
4.1	G. Cao and Y.Wang, Nanostructures and Nanomaterials, 2nd Ed., Imperial							
	College Press, 2004.							
4.2	Ramanathan Nagarajan, T. Allan Hatton, American Chemical Society. Meeting,							
	Nanoparticles: Synthesis, Stabilization, Passivation, and functionalization, 2008							
4.3	G. Cao and Y.Wang, Nanostructures and Nanomaterials, 2nd Ed., Imperial							
	College Press, 2004.							
4.4	C. N. R. Rao, Achim Müller, Anthony K. Cheetham, Nanomaterials Chemistry:							
	Recent Developments and New Directions, Wiley VCH, 2007							

Core Compulsory Readings (Books, Journals, E-sources Websites/ weblinks) List

 G. Cao and Y.Wang, Nanostructures and Nanomaterials, 2nd Ed., Imperial College Press, 2004. R. Kelsall , I.Hamley and M. Geoghegan, Nanoscale Science and Technology, Wiley, 2005.

K. J Klabunde, R. M. Richards, Nanoscale Materials in Chemistry, 2nd Ed., Wiley, 2009.

4. T. Pradeep, A text book of Nano Science and Technology, Tata McGraw-Hill Education, 2012.

5. G. Schmidt, Nanoparticles: from Theory to applications, Wiley-VCH, 2004

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

 Murty, B. S., P. Shankar, Baldev Raj, B. B. Rath, and James Murday. Textbook of nanoscience and nanotechnology. Springer Science & Business Media, 2013

2. Robert K, Ian H, Mark G, Nanoscale Science and Technology, John Wiley & sons Ltd.,2005.

3. Richard C. Pleus, Vladimir Murashov, Physico-Chemical Properties of Nanomaterials, Jenny Stanford Publishing, 2018.

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1. Show mathematically that the surface to volume ratio of nanoparticles is much higher than that of the bulk particle of theidentical material?
- 2. Briefly explain the progress of Nanotechnology over years?
- 3. How do you think biomimicry would help in developing a new tapebased on gecko feet?
- 4. Give an account on the challenges associated with Nanotechnology as anemerging field?
- 5. How does the arrangement of nanostructures affect the wettability in leaves?

- 6. Explain the Jellium model of clusters?
- 7. Write a note on structural colours with specific examples
- 8. Discuss the future prospects of Nanotechnology in the field of medicine?

Semester I					
Core Course					
Course Code:	Course Name:				
MSNST01DSC04	Environmental Impacts of Nanotechnology				
Course Description					

Nanomaterials have been proven to be useful in many environmental remediation applications. There are negative impacts also, such as health problems, relating to exposure to nanomaterials. This course deals with the benefits and negative impacts of nanomaterials to the environment and human beings. The course is divided into four modules. The first module discusses about the sources of nanoparticles and their entry route to human body. The second module deals with the positive impacts of implementing nanotechnology in environmental remediation. Toxicity of carbon nanotubes and metal oxide nanoparticles and their occupational health risks are discussed in third module. Fourth module deals with the effect of nanoparticles on specific human organs.

Course Objectives

1. To create awareness about the sources of nanoparticles, entry route to human body and their potential toxicity.

2. To make the students understand the environmental issues and the possible nanoparticlebased remediation strategies.

3. To understand the positive and negative effects of nanotechnology on the environment.

4. To create awareness about the toxicity of CNTs and metal oxides and their occupational exposure risk.

Credit			Teaching Hours			Assessment		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
4	0	4	72	0	72	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Explain the sources of nanoparticles and their impact to human body and the
	health threats associated with it.
C02	Apply the knowledge of nanoparticle-based remediation materials in current
	environmental issues such as air, water and soil pollution.
C03	Analyze the possible occupational health risks of CNTs and metal oxides
C04	Perform a critical analysis of positive and negative aspects of nanotechnology on
	the environment.
C05	To differentiate toxicity of nanonarticles to specific organs in human body
005	To unreferenciate toxicity of nanoparticles to specific organs in numan obdy
~	

Course outcomes based on revised Blooms taxonomy

Module	Course Contents	No. of Hrs				
1.0	Possible Health Impact of Nanomaterials	18 hrs				
1.1	Sources of Nanoparticles; Epidemiological Evidence; Entry Routes into the Human Body – Lung, Intestinal Tract, Skin; Nano particle Size - Surface and Body Distribution; Effect of Size and Surface Charges					
1.2	Respiratory tract uptake and clearance of nanoparticles, Mucocilia Thrombosis and Lung Inflammation	ary escalator,				

1.3	Nanoparticle-cell interactions, Nanoparticles and Cellular Uptake; Endocytosis-						
	based uptake pathways: Clathrin-dependent endocytosis, Caveolin-dependent						
	endocytosis, Clathrin- and caveolin-independent endocytosis, Phagocytosis,						
	Macropinocytosis, Direct cellular entry of nanoparticles: Cytoplasmic entry by						
	direct translocation, lipid fusion, Electroporation, Microinjection						
1.4	Nervous system uptake of nanoparticles, Structure and function of blood brain						
	barrier, transport mechanisms of nanoparticles across Blood-Brain Barrier						
	Suggested Reading Specific to the module						
1.1	Challa. S. S. R, Kumar, "Nanomaterials - Toxicity, Health and Environmental						
	Issues", Wiley-VCH publisher, 2006						
1.2	Nancy. A, Monteiro-Riviere, Lang Tran. C, "Nanotoxicology: Characterization,						
	Dosing and Health Effects", Informa healthcare, 2007						
1.3	Drobne. D, "Nanotoxicology for safe and Sustainable Nanotechnology",						
	Dominant publisher, 2007						
1.4	Zafar Nyamadzi. M, "A Reference handbook of nanotoxicology", Dominant						
	publisher, 2008						
2.0	Nanomaterials for environmental remediation18 hrs						
2.1	Introduction: Nanonarticle-based Remediation Materials Metal-based						
2.1	nanomaterials Silica-based Nanomaterials Carbon-Based Nanomaterials						
	Polymer-Based Nanomaterials						
2.2	Acid-Base Chemistry, Redox Chemistry: Zero valent Iron, Absorption						
	Chemistry						
2.3	Hybrid Nanostructured Remediation Materials, Nanostructured Metal						
	Phosphonates: Iminodiacetic Acids and Related Chelating Ligands, Macrocycle						
	Metal Phosphonates						
2.4	Self-assembled Monolayers on Mesoporous Supports (SAMMS): Actinide						

	SAMMS- Functional CNTs					
Suggested Reading Specific to the module						
2.1	Challa. S. S. R, Kumar, "Nanomaterials - Toxicity, Health and Environmental					
	Issues", Wiley-VCH publisher, 2006					
2.2	Sabu Thomas, Merin Sara Thomas, Laly A Pothen "Nanotechnology for					
	Environmental Remediation" Wiley-VCH publisher, 2022					
2.3	G.E. Fryxell, G.Cao, "Environmental Applications of Nanomaterials:					
	Synthesis, Sorbents and Sensors", Imperial College Press, 2007					
2.4	Glen Fryxell, Jun Liu, Shas Mattigod, "Self-Assembled Monolayers on					
	Mesoporous Supports (SAMMS) – an Innovative Environmental Sorbent"					
	Materials Technology, 14,188, 1999					
3.0	Biotoxicity of Nanoparticles in Environmental Pollution18 hrs					
3.1	Introduction; Nanoparticles in the Environment; Nanoparticles in Mammalian					
	Systems; Health Threats					
3.2	Nanomaterials and Biotoxicity; Toxicological Studies and Toxicity of CNTs-					
	case study; Pulmonary toxicity, cytotoxicity and cardiovascular effects					
3.3	Toxicity of CNTs and metal oxides and Occupational Exposure Risk; Toxicity					
	of MWCNTs/SWCNTs and Impact on Environmental Health					
3.4	Air Pollution; Introduction to Air Pollution Particles					
Suggested Reading Specific to the module						
3.1	Challa. S. S. R, Kumar, "Nanomaterials - Toxicity, Health and Environmental					
	Issues", Wiley-VCH publisher, 2006					
3.2	Ying Liu, Yuliang Zhao, Baoyun Sun and Chunying Chen, "Understanding the					
	Toxicity of Carbon Nanotubes" Accounts of Chemical Research, 46, 702, 2012					
3.3	Norihiro Kobayashi, Hiroto Izumi, and Yasuo Morimoto, "Review of toxicity					

	studies of carbon nanotubes" J.Occup.Health., 59,394,2017						
3.4	S.C. Bhatia, Textbook of Air Pollution and its Control, Atlantic Publishers and						
	Distributors (P) Ltd, 2007						
4.0	Nanotoxicity on human organs18 hrs						
4.1	Dermal uptake of nanoparticles, Effects of Nanoparticles on the Cardiovascular						
	System; myocardial infarction						
4.2	Nanoparticle Translocation and Direct Vascular Effects; E	ndothelial					
	Dysfunction and Endogenous Fibrinolysis						
4.3	Coagulation and Thrombosis; Cardiac Autonomie Dysfunction; Effects of						
	Nanoparticles on the Liver and Gastrointestinal Tract						
4.4	Effects of NP on the Nervous System, Blood brain barrier						
	Suggested Reading Specific to the module						
4.1	Challa. S. S. R, Kumar, "Nanomaterials - Toxicity, Health and Envi	ronmental					
	Issues", Wiley-VCH publisher, 2006						
4.2	Cristina Buzea, Ivan I. Pacheco, Kevin Robbie "Nanomate	rials and					
	nanoparticles: Sources and toxicity" Biointerphases, Vol. 2, 2007						
4.3	Challa. S. S. R, Kumar, "Nanomaterials - Toxicity, Health and Envi	ronmental					
	Issues", Wiley-VCH publisher, 2006						
4.4	Sermin Genc, Zeynep Zadeoglulari, Stefan H. Fuss, Kursad Genc, "Th	e Adverse					
	Effects of Air Pollution on the Nervous System", Journal of Toxico	ology, vol.					
	2012, 2012						

Core Compulsory Readings (Books, Journals, E-sources Websites/ weblinks) List

 Challa. S. S. R, Kumar, "Nanomaterials - Toxicity, Health and Environmental Issues", Wiley-VCH publisher, 2006

- 2 Nancy. A, Monteiro-Riviere, Lang Tran. C, "Nanotoxicology: Characterization, Dosing and Health Effects", Informa healthcare, 2007.
- 3 Drobne. D, "Nanotoxicology for safe and Sustainable Nanotechnology", Dominant publisher, 2007
- Zafar Nyamadzi. M, "A Reference handbook of nanotoxicology", Dominant publisher, 2008
- 5 Cristina Buzea, Ivan I. Pacheco, Kevin Robbie "Nanomaterials and nanoparticles: Sources and toxicity" Biointerphases, Vol. 2, 2007

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- T. Pradeep, "Nano: The Essentials Understanding nanoscience and nanotechnology", Tata McGrawHill Publishing Company Limited NEW DELHI, 2007.
- 2 Introduction to Nanoscience & Nanotechnology by Gabor L. Hornyak, Harry F. Tibbals, Joydeep Dutta, John J. Moore, CRC Press, Tylor & Francis Group New York, Publisher: CRC Press 2008

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Explain different mechanisms involved in the cellular uptake of nanoparticles.
- 2 Discuss the significance of protein corona in internalization of nanoparticles.
- 3 Classify various hybrid nanostructures for environmental remediation applications.
- 4 Explain the role of functionalized CNTs in controlling air pollution.
- 5 Discuss in detail about the occupational exposure to engineered nanomaterials.
- 6 Explain harmful effects of metal oxide nanoparticles on human health.

- 7 Compare positive and negative effects of nanoparticles on central nervous system.
- 8 Explain the effect of nanoparticle on heart and blood vessel.

	Semester I							
	Practical							
	Cou	rse Code:				Course N	ame:	
	MSNS	ST01DSC0)5			Nano La	ab 1	
			Cou	rse Descri	ption			
The cour	rse is divid	led into fo	ur module	s. Each m	odule disc	usses abo	ut the synt	hesis and
character	ization of	different	nanomater	ials. Modu	le one dis	cusses ab	out the syn	nthesis of
metal na	noparticles	s such as G	old, silver	via chem	ical and gr	een synthe	esis metho	ds and its
character	rization. M	odule two	discuss ab	out the sy	nthesis and	l size tunir	ng of CdSe	quantum
dots and	its charact	terization.	Metal oxic	le nanopai	ticl and m	agnetic na	noparticle	synthesis
and its st	udies are i	ncluded in	module th	ree and for	ur of this c	ourse resp	ectively.	
			C	011				
			Cou	rse Objec	tives			
1 T	o develop	practical s	kill on va	rious synth	esis metho	ods of nan	omaterials	and their
c	haracteriza	tion.						
2 H	lands on ex	xperience o	on various	analytical	instrument	S.		
3 T	3 To develop the data collection skill, to analysis and interpret the results obtained.							
redit Teaching Hours Assessment				t				
L/T	P/I	Total	L/T	L/T P/I Total		СЕ	ESE	Total
-	4	4	-	168	168	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End

Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Synthesize	different	nanomaterials	using	physical,	chemical	and	biological
	methods.							
C02	Tune the size of nanomaterials by controlling the synthesis conditions.							
-----	--							
C03	Know about different analytical instruments and software necessary for the							
	synthesis and characterization of the samples.							

Module	Course Contents	No. of Hrs	
1.0	Module I	42 hrs	
1.1	Synthesis of different sized Ag nanoparticles by aqueous meth	od and their	
	optical microscopy studies		
1.2	Synthesis of different sized Au nanoparticles by aqueous meth-	od and their	
	optical microscopy studies		
1.3	Ag-assisted Electroless etching of Si wafer to form Si nanowires		
1.4	Characterisation of Si nanowires and their application as electrode	S	
2.0	Module II	42 hrs	
0.1			
2.1	Chemical synthesis of CdSe Quantum dots with different sizes.		
2.2	Band gap estimation of CdSe quantum dots by using optical spectroscopy		
2.3	Exciton and plasmon interaction studies of Au-CdSe system by using optical		
	spectroscopy.		
3.0	Module III	42 hrs	
3.1	Sol-gel synthesis of ZnO nanoparticles.		
3.2	Analysis of optical properties of ZnO nanoparticles		
3.3	Synthesis of activated carbon using KOH activation and controlling the pore		
	size by varying parameters		
3.4	Study the electric double layer capacitance properties of activated	carbon.	

3.5	Synthesis of 2-D nanosheets of MoS ₂ by exfoliation technique
4.0	Module IV 42 hrs
4.1	Coprecipitation synthesis of magnetic (iron oxide) nanoparticles.
4.2	Steric and electrostatic stabilization of iron oxide nanoparticles
4.3	Stability studies of iron oxide nanoparticle dispersions using optical microscopy

- Nanostructures and Nanomaterials- Synthesis, Properties & applications by Guozhong Cao, Imperial college Press, (2006). Publisher: World Scientific Publishing Company;
 2 edition (4 January 2011) ISBN-13: 978-9814324557
- 2 Nanoparticles and Nanostructured Films- Preparation Characterization and Applications by Janos H. Fendler, WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 1998. Publisher: Wiley VCH (28 May 1998) ISBN-13: 978-3527294435
- 3 Nanomaterials and Nanochemistry by C. Brechignac.P. Houdy M. Lahmani, Springer-Verlag (2007). (For Unit III-Part I Chapter I)

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- NANO: The Essentials- Understanding Nanoscience and Nanotechnology, by T Pradeep, Tata McGraw Hill Education Pvt. Ltd. New Delhi) ISBN-13: 978-0-07-061788-9
- Introduction to Nanoscience & Nanotechnology by Gabor L. Hornyak, Harry F. Tibbals, Joydeep Dutta, John J. Moore, CRC Press, Tylor & Francis Group New York, 2009. Publisher: CRC Press (15 December 2008) ISBN-13: 978-1420047790

TEACHING LEARNING STRATEGIES

• Practical, Viva Voce

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Semester II								
Core Course								
	Course Code: Course Name:							
	MSNS	ST02DSC0	6	D	esign and S	Synthesis	of Nanom	aterials
			Cour	rse Descri	ption			
The court	se is divid	ed into for	ur modules	s. Each mo	dule descr	ibes a diff	ferent class	s of Nano
synthesis	approach	. Top-dov	wn and bo	ttom-up a	pproach of	f preparing	g nanomat	erials are
familiariz	ed and the	physical, o	chemical a	nd biologie	cal approac	hes of nan	omaterials	synthesis
are cover	ed in the f	irst second	and third	module re	spectively.	Ways to t	une the mo	orphology
and funct	tional prop	perties by t	uning the	preparatio	n paramete	ers are elal	porately co	onsidered.
The four	th module	describes	the fundation	mentals of	different	lithograph	ic processe	es for the
fabricatio	on of nanoo	devices.						
	Course Objectives							
1. To lea	1. To learn the top-down and bottom-up synthesis approach of nanomaterials.							
2. To un	derstand v	various phy	vsical, cher	nical and b	piological 1	methods fo	or the synth	esis of
nanor	nanomaterials.							
3. To tune the morphology and functional properties of nanomaterials by tuning the								
reaction parameters.								
4. To apply basic knowledge of synthesis to prepare functional and smart nanomaterials.								
5. To understand the lithographic process for the fabrication of micro and nanodevices.								
	Credit Teaching Hours Assessment				t			
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
4	0	4	72	0	72	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Synthesize nanomaterials using physical, chemical and biological approaches.
C02	Predict the nucleation and growth mechanisms of various nanostructures.
C03	Tune the size and shape of the nanomaterials for diverse applications.
C04	Design functionalized nanoparticles for specific applications.
C05	Theoretically formulate the fabrication parameters and techniques for device
	manufacturing using lithographic techniques.

Module	Course Contents	No. of Hrs		
1.0	Physical methods for synthesis of nanomaterials	20		
1.1	Inert gas condensation-Principle, advantages and disadvantages, arc discharge			
	- synthesis of CNTs and fullerenes.			
1.2	laser ablation-principle, mechanism of nanoparticle reduction	n, Coloumb		
	explosion, laser pyrolysis- Principle, advantages and disadvan	tages, layer		
	deposition, Spray pyrolysis			
1.3	Microwave irradiation, Gamma radiation-versatility, variou	s kind of		
	nanostructure synthesis, ion implantation			
1.4	Physical Vapour deposition-Principle, evaporation and sputtering	g, molecular		
	beam epitaxy, chemical vapour deposition method- homogeneous and			
	heterogeneous process, transport phenomenon, reaction kinetics, ty	pes of CVD		
1.5	ball milling-principle, grinding media, Electrospinning-processing	parameters,		
	factors affecting the process.			
Suggested Reading Specific to the module				
1.1	Nanostructures and Nanomaterials- Synthesis, Properties & app	olications by		
	Guozhong Cao, Imperial college Press, (2006).			
1.2	Introduction to Nanoscience & Nanotechnology by Gabor L. Horny	/ak, Harry F.		
	Tibbals, Joydeep Dutta, John J. Moore, CRC Press, Tylor & Francis	Group New		
	York, 2009.			
1.3	Angel Yanguas-Gil, Growth and Transport in Nanostructured Mate	erials		
	Reactive Transport in PVD, CVD, and ALD, Springer Internationa	l Publishing,		

	2016			
1.4	An introduction to Electrospinning and Nanofibers by Seeram R	amakrishna,		
	Kazutoshi Fujihara, Wee Eong Tee, Teck Cheng Lim, Zaveri Ma, World Sci.			
	Pub. Ltd. Singapore, 2005			
2.0	Chemical methods for synthesis of nanomaterials	20		
2.1	Chemical methodologies, their advantages, nanoparticles, 1D-nar	nostructures-		
	Nanowires, nanotubes and nanorods; 2D-nanostructures-thin fil	ms- Crystal		
	growth mechanisms, Nanoparticles through homogeneous & h	eterogenous		
	nucleation in solution			
2.2	co-precipitation, chemical reduction, hydrothermal synthesis- iso	thermal and		
	temperature gradient methods, Solvothermal synthesis, Tem	plate based		
	synthesis, Electrochemical synthesis, Sonochemical synthesis-	cavitation,		
	Polyol method Thermal decomposition			
2.3	Sol-gel synthesis- reactions and catalysts, Pechini process, M	ficelles and		
	Microemulsion assisted synthesis- principle and parameters that af	fect size and		
	shape of nanostructured products,			
2.4	Self-assembly- various processes, thermodynamics of self-assembl	y, Langmuir		
	Blodgett (LB) method.			
Suggested Reading Specific to the module				
2.1	Nanostructures and Nanomaterials- Synthesis, Properties & app	olications by		
	Guozhong Cao, Imperial college Press, (2006).			
2.2	Joop Schoonman, Philippe Knauth, Nanostructured Materials, Selected			
	Synthesis Methods, Properties and Applications, Springer US, 200	2		
2.3	Guadalupe Valverde Aguilar, Sol-Gel Method, Design and	Synthesis of		
	New Materials with Interesting Physical, Chemical and	d Biological		
	Properties, IntechOpen, 2019.			
	Joop Schoonman, Philippe Knauth, Nanostructured Materi	als, Selected		
	Synthesis Methods, Properties and Applications, Springer U	US, 2002		
2.4	Himadri B. Bohidar, Kamla Rawat, Design of Nanostructures			
	Self-Assembly of Nanomaterials, Wiley, 2017			
3.0	Biological methods for synthesis of nanomaterials	20		
3.1	Use of bacteria, fungi, actinomycetes and algae for nanopartic	le synthesis,		

	natural synthesis of magnetic nanoparticles using magnetotactic bacteria -		
	magnetosomes, biomineralisation and magnetite crystal growth, role of Mm6		
	protein		
3.2	viruses as components for the formation of nanostructured materials - common		
	virus types used, scaffolds, specific features of plant viruses, functionalizing		
	scaffolds		
3.3	Nanoparticle synthesis with the help of enzymes- biocatalystic enlargement,		
	synthesis of metal nanoparticles and nanowires, Cofactor-assisted Nanoparticle		
	synthesis, DNA assisted synthesis of nanoparticles,		
3.4	role of plant derivatives in nanoparticle synthesis, Nanomaterial synthesis from		
	industrial or agricultural wastes- Carbon, silica and other metal oxides as		
	specific examples		
	Suggested Reading Specific to the module		
3.1	Mohammad Azam Ansari, Suriya Rehman, Microbial Nanotechnology: Green		
	Synthesis and Applications, Springer Nature Singapore, 2021.		
3.2	Dong-Wook Han, Jin-Woo Oh, Virus-Based Nanomaterials and		
	Nanostructures, MDPI AG, 2020.		
3.3	Zhypargul Abdullaeva, Synthesis of Nanoparticles and Nanomaterials,		
	Biological Approaches, Springer International Publishing, 2017		
3.4	Abdel Salam Hamdy Makhlouf, Gomaa A. M. Ali, Waste Recycling		
	Technologies for Nanomaterials Manufacturing, Springer International		
	Publishing, 2021.		
4.0	Lithographic techniques for fabrication of nanomaterials12		
4.1	Basics of micro and nano lithography processes, Optical Lithography-		
	Proximity, contact and projection printing, Materials and methods, Near field		
	Scanning Optical Lithography (NSOL)		
4.2	Electron beam lithography- Rastor scan and vector scan, Pros and cons,		
	proximity effects, SEM based nanolithography, Focused ion beam lithography		
4.3	AFM lithography - Bias assisted and force assisted methods, Dip pen		
	lithography- Diffusive and Liquid Inks, modifications into different probe based		
	and probe less techniques.		
	Suggested Reading Specific to the module		

4.1	Chris Mack, Fundamental Principles of Optical Lithography, The Science of
	Microfabrication Wiley, 2011
4.2	Ivo Utke, Phillip Russell, Stanislav Moshkalev, Nanofabrication Using Focused
	Ion and Electron Beams Principles and Applications, Oxford University Press,
	2012
4.3	José María de Teresa, Nanofabrication, Nanolithography Techniques and Their
	Applications, IOP Publishing, 2020

- Nanostructures and Nanomaterials- Synthesis, Properties & applications by Guozhong Cao, Imperial college Press, (2006). Publisher: World Scientific Publishing Company; 2 edition (4 January 2011) ISBN-13: 978-9814324557
- An introduction to Electrospinning and Nanofibers by Seeram Ramakrishna, Kazutoshi Fujihara, Wee Eong Tee, Teck Cheng Lim, Zaveri Ma, World Sci. Pub. Ltd. Singapore, 2005. Publisher: World Scientific Publishing Co Pte Ltd (8 May 2005) ISBN-13: 978-9812564542
- Springer Handbook of Nanotechnology Bharat Bhusan Publisher: Springer-Verlag (15 May 2006) ISBN-13: 978-3540343660
- Introduction to Nanoscience & Nanotechnology by Gabor L. Hornyak, Harry F. Tibbals, Joydeep Dutta, John J. Moore, CRC Press, Tylor & Francis Group New York, 2009. Publisher: CRC Press (15 December 2008) ISBN-13: 978-1420047790
- Introduction to Nanoscale Science & Technology, Di Ventra, Evoy, Heflin, Springer Science, NY, 2004. Publisher: Springer; 1 edition (30 June 2004)
- Nanofabrication- Fundamentals and Applications, By Ampere A Tseng, Singapore
 2008. Publisher: World Scientific Publishing Co Pte Ltd (18 March 2008) ISBN-13:
 978-9812705426

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

 Nanoparticles and Nanostructured Films- Preparation Characterization and Applications by Janos H. Fendler, WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 1998. Publisher: Wiley VCH (28 May 1998) ISBN-13: 978-3527294435

- Introduction to Nanotechnology Charles P. Poole Jr. and Franks. J. Qwens, Publisher: Wiley-Interscience; 1 edition (30 May 2003) Sold by: Amazon Asia-Pacific Holdings
- 3. Nanochemistry, G.B. Sergeev, Elsevier, 2006
- 4. https://nptel.ac.in/courses/118/102/118102003/
- 5. https://nptel.ac.in/courses/118/107/118107015/

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1. The inert gas being used in the synthesis of nanomaterials by inert gas condensation would affect the final product. Explain?
- 2. The selection of an optimal grinding media is highly crucial in thesynthesis of nanomaterials by ball milling. Explain?
- 3. Laser ablation synthesis can cause freezing" of metastable phases of the ablated material before the formation of the stable phases. Explain?
- 4. Discuss the effects of the solubility of the solute in the solvent and diffusivity of the solvent vapour through the precipitated layer on the spray pyrolysis process.
- 5. Why is heterogeneous CVD preferred over homogeneous CVD?
- 6. Explain diffusion-controlled vs. Reaction controlled regimes for CVD?
- 7. Give an account on the different collision modes in ion implantation synthesis of nanostructures
- 8. Discuss the advantages of microwave irradiation process for the synthesis of nanomaterials.

Semester II		
Core Course		
Course Code:	Course Name:	
MSNST02DSC07	Characterization Techniques for Nanomaterials	

Course Description

The basic principles of different characterization techniques are included in this course. The course is divided into four modules. First module consist of crystallographic characterization techniques from which a detailed information about the sample formed can be understood. The morphology and topographical information related techniques are included in module two of this course. Third module include various thermo mechanical characterization techniques. The electrochemical and magnetic studies such as cyclic voltammetry, Electrochemical impedance spectroscopy, quartz crystal microbalance and some spectroscopy techniques like Mossbauer, ESR and NMR are included in module four of this course.

Course Objectives

- 1 To understand the different characterization techniques used for studying the morphology, crystallographic, thermal, mechanical and electrochemical properties of nanomaterials.
- 2 To understand the principle of various techniques, instrumentation and their areas of application.
- 3 To learn the basic concept of different spectroscopic techniques and their applications.
- 4 To analyse and interpret the data obtained from each technique.

Credit	Teaching Hours	Assessment

L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
4	0	4	72	0	72	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End

Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Choose the characterization technique for studying the properties of nanomaterial
	on the basis of their application.
C02	Analyse the data obtained from various techniques.
C03	Understand the crystallographic information of the nanomaterial synthesized.
C04	Learn about the generation of signals and peaks in different spectroscopic techniques.
C05	Elucidate the structure of organic compounds from spectroscopic techniques.

Module	Course Contents	No. of Hrs
1.0	Spectroscopic Techniques	18
1.1	X-ray Spectroscopy techniques: powder XRD, small angle X-ray	diffraction,
	grazing incidence X-ray diffraction and single crystalline X-ray di	ffraction, X-
	ray fluorescence spectroscopy, X-ray photoelectron spectroscopy.	
1.2	UV-visible spectroscopy, Beer lamberts law, woodward-fieser ru	le for dienes
	and dienones.	
1.3	FT-IR spectroscopy, Raman spectroscopy, Mutual exclusion princi	iple.
	Suggested Reading Specific to the module	
1.1	X-Ray Diffraction Procedures: For Polycrystalline and Amorphou	us Materials,

	2nd Edition - Harold P. Klug, Leroy E. Alexander, Publisher: Wiley-Blackwell;
	2nd Revised edition edition (1 January 1974) ISBN-13: 978-0471493693
1.2	Elementary Organic Spectroscopy, Y.R Sharma
1.3	i)Principle of Physical Chemistry, B.R Puri, L.R Sharma and Madan S Pathania
	ii) Fundamentals of Molecular Spectroscopy, C N Banwell.
2.0	Microscopic Techniques 18
2.1	Optical microscopy, fluorescence microscopy and confocal laser scanning microscopy.
2.2	Electron Microscope: scanning electron microscopy – signal generation, interaction volume, factors affecting signal quality, charging effect, edge effect,
	aberrations- spherical, chromatic and astigmatism, need for vacuum in EM, sample preparation, instrumentation.
	Transmission electron microscopy – different imaging modes - bright, dark and SAED, instrumentation.
2.3	Scanning probe microscopy: scanning tunneling microscopy, principle- quantum tunneling, constant current mode, constant height mode, piezoelectric effect, piezoscanner and feedback loop, instrumentation, atomic force microscopy, force-distance curve, contact mode, non-contact mode, tapping mode, near field scanning optical microscopy and its modes.
	Suggested Reading Specific to the module
2.1	Nanotechnology principles and Practices, Sulabha K Kulkarani.
2.2	Introduction to Nanoscience and Nanotechnology, by K K Chattopadhyay, PHI
	Learning Pvt. Ltd. New Delhi 2019, ISBN-13: 978-81-203-3608-7.
2.3	Nanostructures and Nanomaterial Synthesis, Properties and Application, Guozhong Cao.

3.0	Thermal & Mechanical methods18
3.1	Thermal methods: thermogravimetric analysis, derivative thermogravimetry,
	differential thermal analysis, differential scanning calorimetry, combustion
	calorimetry, thermal diffusivity by the laser flash technique.
3.2	Simultaneous techniques including analysis for gaseous products- evolved gas
	detection and evolved gas analysis - FTIR-TG, FTIR-MS, FTIR-GC.
3.3	Mechanical testing- Introduction, tension testing- stress-strain curve, high strain
	rate testing of materials, fracture toughness testing methods, hardness testing-
	micro, macro, nano – brinell, Rockwell, Vickers, knoop, nanoindendation.
	Suggested Reading Specific to the module
3.1	Thermal analysis Techniques and application, NK Kaushik and SK Shukla.
3.2	Thermal analysis of polymers: Fundamentals and Application, Joseph D
	Menczel, R Bruce Prime.
3.3	Mechanical Behaviour and testing of materials, A K Bhargava and C P Sharma.
4.0	Magnetic & Electrochemical methods 18
4.1	Mossbauer spectroscopy - Mossbauer effect, isomer shift, factors effecting
	isomer shift, nuclear electric quadrapole splitting, Zeeman splitting.
4.2	Electron paramagnetic resonance spectroscopy – number of signals, hyperfine
	splitting, ESR of transition metal complexes -zero field splitting, Kramer's
	degeneracy, Mc. Conell relationship.
4.3	Nuclear magnetic resonance - proton nmr, equivalent and non-equivalent
	protons, chemical shift, shielding and de-shielding, nuclear spin-spin coupling,
	fluxional behaviour, ¹³ C - number of signals, ¹⁹ F, ³¹ P-NMR.
4.4	Vibrating sample magnetometer, Magneto-optic Kerr effect. Electrochemical
	Techniques: Cyclic voltammetry, electrochemical impedance, scanning

	electrochemical microscopy, quartz crystal micro balance.					
	Suggested Reading Specific to the module					
4.1	Principle of Physical Chemistry, B.R Puri, L.R Sharma and Madan S Pathania					
4.2	Principle of Physical Chemistry, B.R Puri, L.R Sharma and Madan S Pathania					
4.3	Introduction to Spectroscopy, Donald L Pavia, Gary M. Lampman, George S Kriz.					
4.4	An Introduction of Electrochemistry, Samuel Glasstone					

- 1 Introduction to Nanoscience and Nanotechnology, by K K Chattopadhyay, PHI Learning Pvt. Ltd. New Delhi 2019, ISBN-13: 978-81-203-3608-7.
- Characterization of Materials Vol 1 &2, by Elton N. Kaufmann, John Wiley and Sons Publication, 2003. New Jersey.
- 3 Principles of instrumental analysis, Douglas A Skoog, Donald M West, Saunders College, Philadelphia. Publisher: Cengage; 6 edition (1 November 2014) ISBN-13: 978-81-315- 25579.
- 4 NANO: The Essentials- Understanding Nanoscience and Nanotechnology, by T
 Pradeep, Tata McGraw Hill Education Pvt. Ltd. New Delhi) ISBN-13: 978-0-07-061788-9
- X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition - Harold P. Klug, Leroy E. Alexander, Publisher: Wiley-Blackwell; 2nd Revised edition edition (1 January 1974) ISBN-13: 978-0471493693
- 6 Transmission Electron Microscopy: A Textbook for Materials Science (4-Vol Set)-David B. Williams and C. Barry Carter, Publisher: Springer; 1st ed. 1996. Corr. 6th printing edition (15 April 2005) ISBN-13: 978-0306453243

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM - Ray F. Egerton, Publisher: Springer; Softcover reprint of hardcover 1st ed. 2005 edition (12 October 2010) ISBN-13: 978-1441938374
- Springer handbook of Nanotechnology ed. Bharat Bhushan (Springer), Publisher:
 Springer-Verlag (15 May 2006) ISBN-13: 978-3540343660

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Discuss in detail the factors that influence the image quality in scanning electron microscopy.
- 2 Explain bright field and dark filed image formation in TEM.
- 3 Write a note on nanoindendation and nanotension testing.
- 4 Explain the terms: isomer shift, nuclear electric quadruple splitting and Zeeman splitting.
- 5 Discuss the nuclear spin splitting in ethanol.

Semester II				
Core Course				
Course Code:	Course Name:			
MSNST02DSC08	Nano Lab II			
Course Description				
The course introduces the students with different wet chemical routs for nanomaterial				

synthesis. Exposure to various sophisticated instruments is also part of the lab program.

Course Objectives

- 1. To develop practical skill on different methods of nanomaterial synthesis.
- 2. Hands on experience on various analytical instruments for synthesis and application.
- 3. To develop the data collection skill, to analysis and interpret the results obtained.

Credit		Teaching Hours			Assessment			
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
0	4	4	0	168	168	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Formulate the conditions and requirement for the synthesis of nanosized materials.
C02	Choose different physical and chemical methods suitable for the synthesis of a
	particular nanomaterial.
C03	Apply analytical instruments and software necessary for the synthesis and
	characterization of the samples

Module	Course Contents	No. of Hrs				
1.0	Module I 42					
1.1	Thin film Preparation of Metal Oxide (Spin Coating)					
	Cyclic Voltammetry studies of Metal oxide as thin film electrodes					
1.2	Synthesis of metal oxide nanotubes					
	Photocatalytic studies of semiconductors					
1.3	Synthesis of graphene					
	 Application of graphene as supercapacitor electrode 					
	Molten salt synthesis of metal oxide nanoparticles					
2.0	Module II	42				
2.1	Synthesis of nanocomposite materials					
2.2	• Effect of particle size on conductivity of a nanocomposites					

2.3	Hydro/Solvothermal synthesis of metal oxide nanostructures of different					
	morphology by varying parameters					
2.4	Chemical bath deposition of thin films based on metal oxides					
2.4	Chemical bath deposition of thin mins based on metal oxides.					
3.0	Module III	42				
3.1	Solvothermal method for ZnO					
	• Find out the band edge in UV - Vis spectroscopy					
3.2	Synthesis of SnO ₂ nanostructures					
	• Fabrication of gas sensor using SnO2 nanostructure					
3.3	TGA-DTA studies of metal oxide nanoparticles					
4.0	Module IV	42				
4.1	Co-precipitation synthesis of iron oxide nanoparticles					
	• Synthesis of ferrofluids and their characterizations using the i	iron oxide				
	nanoparticles					
4.2	Hydrothermal synthesis of TiO ₂ nanoparticles					
	• Construction of Solar cell with TiO ₂ nanoparticles					
4.3	Synthesis of polymer nanowires using electrospinning	and their				
	characterizations					
	• Controlling the size and morphology of nanostructures by	y varying				
	parameters of eletrospinning					
	• Synthesis of metal oxide/carbon composite nanowires using electr	rospinning				

References /compulsory readings

- Nanostructures and Nanomaterials- Synthesis, Properties & applications by Guozhong Cao, Imperial college Press, (2006). Publisher: World Scientific Publishing Company; 2 edition (4 January 2011) ISBN-13: 978-9814324557
- Nanoparticles and Nanostructured Films- Preparation Characterization and Applications by Janos H. Fendler, WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 1998. Publisher: Wiley VCH (28 May 1998) ISBN-13: 978-3527294435
- Nanomaterials and Nanochemistry by C. Brechignac.P. Houdy M. Lahmani, Springer-Verlag (2007). (For Unit III-Part I Chapter I)

- NANO: The Essentials- Understanding Nanoscience and Nanotechnology, by T Pradeep, Tata McGraw Hill Education Pvt. Ltd. New Delhi) ISBN-13: 978-0-07-061788-9
- Introduction to Nanoscience & Nanotechnology by Gabor L. Hornyak, Harry F. Tibbals, Joydeep Dutta, John J. Moore, CRC Press, Tylor & Francis Group New York, 2009. Publisher: CRC Press (15 December 2008) ISBN-13: 978-1420047790

TEACHING LEARNING STRATEGIES

• Practical Examinations, Semester Viva Voce

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Semester II					
Elective Course					
Course Code: Course Name:					
MSNST02DSE01 Elements of Physical Chemistry					
Course Description					
This course introduces students to the core are	ea of physical chemistry, based around the				
themes of systems, states and processes. This	course consists of the topics covered in the				
area of chemical thermodynamics, phase changes, surface chemistry and colloidal system.					
Course Objectives					
1 To study energy conversion in different forms and entropy of the system.					
2 To understand the efficiency of a process for the transformation between energy					
and work.					

- 3 To realize that stability of different phases of materials depends on basic thermodynamic functions
- 4 To understand the different adsorption theories and adsorption isotherm
- 5 To understand various dispersion types of both the dispersed phase and the dispersion medium of colloidal system.

Credit			Teaching Hours			Assessment		
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Formulate the Laws of thermodynamics, heat, work, thermal efficiency and various forms of energy.
C02	Analyse phase, equilibrium, component, degree of freedom and phase rule concepts
C03	Interpret the stability regions in one component and two component systems by using phase diagrams.
C04	Compare the Langmuir, Freundlich, BET and Gibbs isotherms.
C05	Summarise the basic concepts of colloidal system and its stability.

Module	Course Contents	No of hrs	
1.0	Thermodynamics	22hrs	
1.1	First Law of Thermodynamics-types of system- state variables	-extensive and	
	intensive properties-Processes and their types-heat, work, heat	t capacity of a	

	system, enthalpy of a system and internal energy-State function and Path						
	function- Isothermal Expansion-Isothermal Compression.						
1.2	Second Law of Thermodynamics – Cyclic Process-Efficiency of heat engine-						
	Carnot Theorem-Entropy and Criterion for Equilibrium – Statistical						
	interpretation of entropy - Boltzmann equation. Entropy changes in isothermal						
	expansion- Entropy change during phase changes- Entropy change in different						
	processes-Entropy of mixing.						
1.3	Auxiliary Functions – Thermodynamic Relations – Variation of free energy						
	change with temperature and pressure-Maxwell's Equations – Gibbs -						
	Helmholtz Equation – Thermodynamics of open systems-Partial Molar						
	Properties-Concept of chemical potential-Variation of chemical potential with						
	temperature and pressure						
1.4	Clapeyron-Clausius Equation(derivation)- Application of Clapeyron-Clausius						
	Equation - The third law of Thermodynamics-Nernst heat theorem- First,						
	second, and third laws of thermodynamics as applied to nanoscale systems.						
Suggested Reading Specific to the module							
1.1	Principles of Thermodynamics, J.P. Ansermet and S. D. Brechet, Cambridge						
	University Press (2019)						
1.2	An Introduction to Chemical Thermodynamics, R.P Rastogi, R. R Misra, Vikas						
	publication						
1.3	Thermodynamics for Chemist, Samuel Glasttone, Affiliated East West						
	publication						
1.4	Thermodynamics, Lewis and Randall, Mc Graw Hill.						
2.0							
2.0	Phase Equilibria 22nrs						
2.1	Phase equilibrium in a one- component system - Water system- Carbon Dioxide						
	system-Sulphur system -Polymorphism.						
2.2							
2.2	Phase diagrams of binary Systems – Lead-Silver system- Bismuth-Cadmium						
2.2	Phase diagrams of binary Systems – Lead-Silver system- Bismuth-Cadmium System-Congruent melting point-Incongruent melting point-Criteria for Phase						

	stability.
2.3	Thermodynamics and kinetics of phase transformations- Homogeneous nucleation- Heterogeneous nucleation. Physical phenomena of small systems - nano-crystals.
2.4	Macromolecules-classification of macromolecules-molecular weight determination-polydispersity index-polymerisation reactions- thermodynamics and physical properties of long chain molecules and molecular structures.
	Suggested Reading Specific to the module
2.1	 Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis, M. Hillert, Cambridge University Press; 2nd edition (2007).
2.2	Physical Chemistry, Daniels and Alberty, John Wiley.
2.3	Physical Chemistry, G. W. Castellan, Addison-Lesley Publishing.
2.4	Gurdeep Raj Advanced Physical Chemistry GOEL Publishing House, Meerut, 2004.
3.0	Surface chemistry 14hrs
3.1	Surface Chemistry: Adsorption and absorption-Physisorption and Chemisorption-Factors influencing adsorption.
3.2	Adsorption isotherms- Types of adsorption isotherms, Adsorption isobar- Adsorption isostere.
3.3	Freundlich adsorption isotherm- Langmuir adsorption theory-assumptions- Langmuir adsorption isotherm- limitations.
3.4	B.E.T. theory of multilayer adsorption- B.E.T adsorption isotherm-limitations- Gibbs adsorption isotherm- Application of adsorption.
	Suggested Reading Specific to the module

3.1	Principles of Adsorption and Adsorption Processes, D. M. Ruthven, John
	Wiley & Sons, (1984).
2.2	Physical Chamistry, Daniels and Alberty, John Wiley
5.2	Physical Chemisuly, Dameis and Alberty, John Whey.
3.3	Puri, Sharma, Pathania, Principles of physical Chemistry, Vishal publishing
	company, 2013.
3.4	Physics and Chemistry of Surfaces by A.W Adamson, Wiley India Pvt Ltd;
	Sixth edition (2011)
4.0	Colloids 14hrs
4.1	Colloids: Classification of Colloids, Preparation of colloidal solutions-
	Dispersion methods and condensation methods- Purification of colloidal
	solution.
4.2	Properties of colloidal solution-optical properties-electrical properties-
	electrokinetic properties-Electrophoresis-Electro-osmosis.
4.3	Origin of charge-The electrical double layer-gold number-Flocculation value-
	Emulsion- Gels- uses of colloids.
4.4	Micelle formation- The critical micellization concentration- Factors affecting
	the MC-Application of colloids.
	Suggested Reading Specific to the module
4.1	Principles of Colloid and Surface Chemistry, P. C. Hiemenz, R. Rajagopalan,
	CRC Press; 3rd edition (1997)
4.2	Encyclopedia of Colloid and Interface Science by Tharwat Tadros (2013),
	Springer.
4.3	Introduction to Modern Colloid Science by Robert J. Hunter, Oxford University
	Press.
4.4	Physical Chemistry, R. A. Albert and R. J. Silby, Wiley Eastern

- 1 David V. Ragone, Thermodynamics of Materials, Volume I, J. W. Wiley 1995.
- 2 Thermodynamics in Materials Science, By Robert T. De Hoff, McGraw-Hill, 1993.
- 3 Thermodynamics and Statistical Mechanics by A N Tikhonov, Peter Theodore Landsberg
- 4 Physical Chemistry by P. W. Atkins, Oxford Press
- 5 Nanoscale Materials in Chemistry by Kenneth J. Khabhunde (ed.) Wiley Interscience

- 1 Robert K, Ian H, Mark G, Nanoscale Science and Technology, John Wiley & sons Ltd.,2005.
- 2 Daniel V. Schroeder: An Introduction to Thermal Physics, Addison-Wesley, 2000
- 3 Thermodynamics and Statistical Mechanics by John M. Seddon, J. D. Gal

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Formulate the Maxwell Relationship
- 2 Derive Clapeyron-Clausis equation.
- 3 Sketch the phase diagram of a simple eutectic system.
- 4 Analyze the different steps of crystallization process
- 5 Compare different types of adsorption isotherms.
- 6 Sketch the adsorption isobar and isostere
- 7 List some of the application of colloids.
- 8 Differentiate between lyophilic and lyophobic colloids

Semester II							
Elective Course							
Course Code:	Course Name:						
MSNST02DSE02	MSNST02DSE02 Nanoscale Magnetic materials and						
	Devices						
Course D	escription						
This course provides fundamentals of magnet	ism, magnetic materials and their applications						
in modern device technologies. The course is divided into four modules. Module 1 discusses							
basic concepts of magnetism. Module 2 gives an account on the electron transport and spin							
relaxation in magnetic multilayers. Various fabrication and characterization techniques of							
nanomagnetic materials are elaborated in module 3. Module 4 discusses applications of							
magnetic materials in data storage.							
Course Objectives							
1 To study the basic concept of magnetism in solids							

- 2 To introduce the fundamentals of Nanomagnetism
- 3 To understand the Fabrication and Characterization techniques of nanomagnetic materials.
- 4 To learn the fundamentals and device applications of magnetic materials

Credit		Teaching Hours			Assessment			
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

C01	Explain the fundamentals of magnetism in solids
C02	Describe the basic concepts of nanomagnetism
C03	Explain the Fabrication and Characterization techniques of nanomagnetic materials
C04	Discuss the applications of nanomagnetism in different devices
C05	Explain the principle of different nanomagnetic devices

Course Learning Outcomes: At the end of the course, the student will be able to -

Module	Course Contents	No. of Hrs
1.0	Overview of Magnetism in Solids	16 hrs
1.1	Introduction: Magnetic fundamentals, Spontaneous Magnetizat	ion and Curie
	Temperature, Magnetic Parameters, Stoner-Wohlfarth threshold	
1.2	Antiferromagnetic materials, ferroelectric domains, phas	e transitions,
	deviations from ideal ferroelectric behavior, diffuse-phase	e transitions,
	electrostriction, and electro-optic effects in ferroelectrics	
1.3	Complex perovskites, polar nano regions, ferroelectric relaxors,	order-disorder
	ferroelectrics	
1.4	Antiferroelectrics, Memory Fundamentals – Magnetic Storage F	undamentals
	Suggested Reading Specific to the module	
1.1	Yimei Zhu, "Modern Techniques for Characterizing Magnet	tic Materials",
	Springer, 2005	
1.2	Nicola Ann Spaldin, "Magnetic Materials: Fundamentals	and Device
	Applications" Cambridge University Press, 2003	

1.3	Georgia C. Papaefthymiou, "Nanomagnetism An Interdisciplinary	
	Approach", CRC Press, 2022	
1.4	Kannan M. Krishnan, "Fundamentals and Applications of Magnetic Materi-	
	als", Oxford University Press, 2016	
2.0	Fundamentals of Nanomagnetism14 hrs	
2.1	Electron Transport in Magnetic Multi-layers, Spintronics	
2.2	Spin Polarized Electron Tunneling, Interlayer Exchange Coupling	
2.3	Spin Relaxation in Magnetic Metallic layers and Multi-layers	
2.4	Non-Equilibrium Spin Dynamics in Laterally Defined Magnetic Structures	
	Suggested Reading Specific to the module	
2.1	Yimei Zhu, "Modern Techniques for Characterizing Magnetic Materials",	
	Springer, 2005	
2.2	Nicola Ann Spaldin, "Magnetic Materials: Fundamentals and Device	
	Applications" Cambridge University Press, 2003	
2.3	J. Anthony C. Bland, Bretislav Heinrich, "Ultrathin Magnetic Structures III	
2.4	Fundamentals of Nanomagnetism", Springer, 2005	
2.4	J. Anthony C. Bland, Bretislav Heinrich, "Ultrathin Magnetic Structures III	
	Fundamentals of Nanomagnetism", Springer, 2005	
3.0	Fabrication and Characterization of Nanomagnetic materials20 hrs	
3.1	Particulate Nanomagnets, Geometrical Nanomagnets, Fabrication Techniques	
	Scaling	
3.2	Characterization using Various Techniques, Imaging Magnetic	
	Microspectroscopy	

3.3	Study of Ferromagnetic & and Antiferromagnetic Interfaces – Optical	l Imaging
3.4	Lorentz Microscopy, Electron Holography of Magnetic Nanos	structures,
	Magnetic Force Microscopy	
	Suggested Reading Specific to the module	
3.1	Nicola Ann Spaldin, "Magnetic Materials: Fundamentals and	d Device
	Applications", Cambridge University Press, 2003	
3.2		
	J. Anthony C. Bland, Bretislav Heinrich, "Ultrathin Magnetic Structur	res III
	Fundamentals of Nanomagnetism", Springer, 2005	
3.3		· D
	Dr. Lamberto Duo, Dr. Marco Finazzi, Dr. Franco Ciccacci, Magneti	lic Prop-
	erties of Antiferromagnetic Oxide Materials: Surfaces, Interfaces, and	d Thin
	Films", Wiley-VCH, 2010	
3.4	Hans P. Oepen and H.Hopster, "Magnetic Microscopy of Nanostr	tructures",
	Springer, 2004	
1.0		
4.0	Applications and Devices	22 hrs
4.0 4.1	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – 1	22 hrs Materials
4.0 4.1	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – I Used, Write Heads, Read Heads	22 hrs Materials
4.0	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – 1 Used, Write Heads, Read Heads	22 hrs Materials
4.0 4.1 4.2	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – 1 Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferro	22 hrs Materials
4.0 4.1 4.2	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – 1 Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferro Materials	22 hrs Materials
4.0 4.1 4.2 4.3	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – 1 Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferro Materials Future of Magnetic Data Storage - Magneto-Optics and Magneto-	22 hrs Materials omagnetic neto-optic
4.0 4.1 4.2 4.3	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – 1 Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferro Materials Future of Magnetic Data Storage - Magneto-Optics and Magneto- recording – Kerr Effect – Faraday Effect	22 hrs Materials omagnetic neto-optic
4.0 4.1 4.2 4.3	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – 1 Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferro Materials Future of Magnetic Data Storage - Magneto-Optics and Magnetoresistance – Faraday Effect	22 hrs Materials
4.0 4.1 4.2 4.3 4.4	Applications and DevicesMagnetic Data Storage :Introduction, Magnetic Media, Properties – 1Used, Write Heads, Read HeadsMagnetoresistance – General – in Normal Metals and in FerroMaterialsFuture of Magnetic Data Storage - Magneto-Optics and Magnrecording – Kerr Effect – Faraday EffectMagnetic Semiconductors, Spintronics devices, noise reduction	22 hrs Materials omagnetic neto-optic
4.0 4.1 4.2 4.3 4.4	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – 1 Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferro Materials Future of Magnetic Data Storage - Magneto-Optics and Magnetored Reading Effect Magnetic Semiconductors, Spintronics devices, noise reduction	22 hrs Materials omagnetic neto-optic
4.0 4.1 4.2 4.3 4.4	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – I Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferror Materials Future of Magnetic Data Storage - Magneto-Optics and Magnetic recording – Kerr Effect – Faraday Effect Magnetic Semiconductors, Spintronics devices, noise reduction Suggested Reading Specific to the module	22 hrs Materials omagnetic neto-optic
4.0 4.1 4.2 4.3 4.4 4.1	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – I Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferro Materials Future of Magnetic Data Storage - Magneto-Optics and Magn recording – Kerr Effect – Faraday Effect Magnetic Semiconductors, Spintronics devices, noise reduction Suggested Reading Specific to the module JAC Bland and B. Heinrich, "Ultrathin Magnetic Structures III – Fund	22 hrs Materials omagnetic neto-optic damentals
4.0 4.1 4.2 4.3 4.4 4.1	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – 1 Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferro Materials Future of Magnetic Data Storage - Magneto-Optics and Magnetored recording – Kerr Effect – Faraday Effect Magnetic Semiconductors, Spintronics devices, noise reduction JAC Bland and B. Heinrich, "Ultrathin Magnetic Structures III – Fund of Nanomagnetism", Springer, 2004	22 hrs Materials omagnetic neto-optic damentals
4.0 4.1 4.2 4.3 4.4 4.1	Applications and Devices Magnetic Data Storage :Introduction, Magnetic Media, Properties – I Used, Write Heads, Read Heads Magnetoresistance – General – in Normal Metals and in Ferro Materials Future of Magnetic Data Storage - Magneto-Optics and Magnetored Magnetic Semiconductors, Spintronics devices, noise reduction Suggested Reading Specific to the module JAC Bland and B. Heinrich, "Ultrathin Magnetic Structures III – Fundorf Nanomagnetism", Springer, 2004	22 hrs Materials omagnetic neto-optic damentals

	Applications", Cambridge University Press, 2003
4.3	N. Spaldin, "Magnetic Materials: Fundamentals and Applications", Cambridge
	University Press, 2010
4.4	Claudia Felser, Gerhard H Fecher, "Spintronics From Materials to Devices",
	Springer, 2013

- i.1 Ultrathin Magnetic Structures III Fundamentals of Nanomagnetism JAC Bland and B. Heinrich, Springer (2004) ISBN 3540219536
- i.2 Modern Techniques for Characterizing Magnetic Materials Edited by Yimei Zhu, Springer (2005) ISBN 1402080077
- i.3 Magnetic Materials: Fundamentals and Device Applications Nicola Ann Spaldin, Cambridge University Press (2003) ISBN 0521016584

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- i.1 J. Anthony C. Bland, Bretislav Heinrich Ultrathin Magnetic Structures III Fundamentals of Nanomagnetism, Springer ,2005.
- i.2 Magnetic Microscopy of Nanostructures Hans P. Oepen and H.Hopster, Springer (2004) ISBN 3540401865

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- i.1 Explain spontaneous magnetization in ferromagnetic materials.
- i.2 Discuss electro-optic effects in ferroelectrics.
- i.3 Write a note on electron transport in magnetic multilayers.
- i.4 Briefly explain spin polarized electron tunneling.
- i.5 List out various characterization techniques of nanomagnets.
- i.6 Discuss about electron holography of magnetic nanostructures.
- i.7 Distinguish between Kerr effect and Faraday effect.
- i.8 Write a note on spinctronics.

Semes	ter II		
Elective Course			
Course Code:	Course Name:		
MSNST02DSE03	Nanomaterials for Energy and		
	Environment		
Course Description			
This course deals with the energy and environ	mental applications of various nanomaterials.		
The course is divided into four modules. First r	nodule discusses about clean energy resources		
with a special emphasis on solar energy and solar cells. The second module gives a detailed			
account on various electrochemical energy storage devices such as fuel cells, batteries and			
supercapacitors. Third module discusses about green nanotechnology and applications of			
nanomaterials for environmental remediation	on. Preparation and importance of various		
biodegradable polymers is explained in modul	e 4.		
	1 •		

Course Objectives

- i.1 To understand the importance of alternative energy resources such as solar energy and hydrogen energy.
- i.2 To understand basic principles of different types of solar cells and their importance in

current scenario.

i.3 To introduce hydrogen energy and various production methods and storage of hydrogen.

- i.4 To make a clear idea about various components and applications of fuel cells, batteries and supercapacitors.
- i.5 To understand the importance of green nanotechnology and its use in environmental remediation.
- i.6 To make students aware of the applications of nanotechnology in the synthesis of biodegradable polymers.

Credit		Teaching Hours		Assessment				
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Apply the skills and knowledge gained through the subject to real life situations
	and problems related to environment.
C02	Explain the basic principles of green nanotechnology and develop methods for
	pollution abatement and resource management.
C03	Explain the importance of alternative energy technologies such as solar energy and
	hydrogen energy.
C04	Remember the principles behind each electrochemical energy storage systems.
C05	Critically evaluate the environmental threats of plastics and the importance of
	developing biodegradable polymers.

Module	Course Contents	No. of Hrs
1.0	Nanomaterials for clean energy	18 hrs
1.1	Energy and Environment, Classification of energy sources, sustai production based on renewable energy sources	nable energy
1.2	Sustainability: Agriculture, Water, Energy, Nanomaterials used in Nanomaterials used in energy and environmental application properties	n agriculture, ns and their
1.3	Solar energy, solar cells, working principle, V-I Characteristics, d solar cell, Electron transfer mechanism in DSSC, quantum dot set cells, Perovskite solar cells, organic solar cells, Bulk heterojunctic	ye sensitized nsitized solar on
1.4	Hydrogen energy, hydrogen production by water splitting, hydrog	en storage
	Suggested Reading Specific to the module	
1.1	Jingbio louise Liu, Sajid Bashir, "Advanced Nanomaterial applications in Renewable energy", Elsevier, 2015	s and their
1.2	Tetsuo Soga, "Nanostructured Materials for Solar Energy Conversi , 2006	on", Elsevier
1.3	Alan Fahrenbruch, Richard Bube, "Fundamentals of Solar Cells Solar Energy Conversion", Elsevier ,1983	Photovoltaic
1.4	Elias K. Stefanakos, Sesha S. Srinivasan, "Clean Energy and Fuel Storage", MDPI, 2019	(Hydrogen)
2.0	Nanomaterials in electrochemical energy storage	18 hrs
2.1	Alternative energy technologies, Electrochemical energy cor storage systems, Ragone plot	version and
2.2	Fuel cells, Types of fuel cells: Polymer electrolyte membrane fuel methanol fuel cells, Alkaline fuel cells, Phosphoric acid fuel carbonate fuel cells, Solid oxide fuel cells, thermodynamics of	l cells, Direct cells, Molten of fuel cells,

	electrocatalysts for anode reactions, catalysts for oxygen reduction reactio	ns
2.3	Batteries, Li-ion battery, Electrode materials and electrolytes in Li-ion bat	ttery,
	Lithium dendrite formation, Solid electrolyte interphase, Types of L	Li-ion
	incorporation in anode materials: Intercalation, alloying and conversion, N	a-ion
	battery	
2.4	General properties of electrochemical capacitors. Supercapacitor, Elec	trical
2.7	double layer capacitor pseudocapacitor Intrinsic intercalation and extr	rinsic
	nseudocanacitors. Symmetric and asymmetric super canacitors. Li-ion h	hased
	hybrid supercapacitors. Applications of electrochemical capacitor	Juseu
	nyona supercapacitors, reprications of electrochemical capacitor	
	Suggested Reading Specific to the module	
2.1	Jingbio louise Liu, Sajid Bashir, "Advanced Nanomaterials and	their
	applications in Renewable energy", Elsevier, 2015	
2.2	G.A. Nazri and G. Pistoia, "Lithium Batteries: Science and Technological and the state of the st	ogy",
	Kluwer Academic Publishers, Dordrecht, Netherlands, 2004	
2.3	J. Larmine and A. Dicks, "Fuel Cell System Explained," John Wiley, New	York
	, 2000	
2.4		
2.4	B. E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals	and
	Technological Applications, Springer, 1999	
3.0	Nanomaterials for environmental remediation18	hrs
3.1	Green nanotechnology and its principles	
3.2	Nanomaterials for environmental Remediation, Photocatalysis, Solid v	waste
	removal	
3.3	Water purification using nanomaterials, desalination of water, Mem	brane
	desalination processes: Membrane distillation, reverse osmosis, for	ward
	osmosis, electrodialysis	

3.4	Porous materials to store clean energy gases, Metal organic frame works	
	(MOFs), Storage of carbon dioxide, methane and hydrogen in MOFs	
	Suggested Reading Specific to the module	
3.1	Jingbio louise Liu, Sajid Bashir, "Advanced Nanomaterials and their	
	applications in Renewable energy", Elsevier, 2015	
3.2	Challa. S. S. R, Kumar, "Nanomaterials - Toxicity, Health and Environmental	
	Issues", Wiley-VCH publisher, 2006	
3.3	Sabu Thomas, Merin Sara Thomas, Laly A Pothen "Nanotechnology for	
	Environmental Remediation" Wiley-VCH publisher, 2022	
3.4	Martin Schröder "Functional Metal-Organic Frameworks ⁻ Gas Storage Sena-	
	ration and Catalysis" Springer 2010	
4.0	Nanomaterials for biodegradable polymers 18 hrs	
	Tunomateriais for biodegradable polymers 10 ms	
4.1	Introduction to commercial plastics and elastomers, thermoplastics and	
	thermosetting plastics, Glass transition temperature	
4.2	Natural Rubber (NR), modified NR and blends-Modified NR: cyclised NR,	
	Liquid NR, deproteinized NR, Chlorinated NR, epoxidized NR, modification by	
	grafting	
4.3	Polyesters from microbial and plant biofactories (polylactic acid and poly	
	hyroxyalkanoates)- Plastics from vegetable oils: triglyceride oil and derived	
	polymers	
4.4	Structure properties and applications of Cellulose and starch-based materials -	
	Natural fillers, fibers, classification of natural fibers, reinforcements and clay	
	nanocomposites-morphologies of clay polymer nanocomposites,	
	Biodegradability	
Suggested Reading Specific to the module		
	Suggesten Remaing Specific to the mounte	

4.1	Harper, Charles A., "Handbook of Plastics, Elastomers, and Composites". 4th				
	ed., McGRAW-HILL, 2002				
4.2	Ghosh, Premamoy., Polymer Science and Technology: Plastics, Rubbers, Blends and Composites. 3rd ed. New York: McGraw-Hill Education, 2011				
4.3	Lee, G.N., Na, J. Future of microbial polyesters. <i>Microb Cell Fact</i> 12 , 54, 2013				
4.4	Khouloud Jlassi, Mohamed M. Chehimi, Sabu Thomas, "Clay-Polymer Nanocomposites", Elsavier, 2017				

- i.1 Jingbio louise Liu, Sajid Bashir, "Advanced Nanomaterials and their applications in Renewable energy", Elsevier, 2015
- i.2 Tetsuo Soga, "Nanostructured Materials for Solar Energy Conversion", Elsevier, 2006
- i.3 A. Nazri and G. Pistoia, "Lithium Batteries: Science and Technology", Kluwer Academic Publishers, Dordrecht, Netherlands, 2004.
- i.4 J. Larmine and A. Dicks, "Fuel Cell System Explained", John Wiley, New York, 2000
- i.5 Lee, G.N., Na, J. "Future of microbial polyesters" Microb Cell Fact 12, 54, 2013
- i.6 Khouloud Jlassi, Mohamed M. Chehimi, Sabu Thomas, "Clay-Polymer Nanocomposites", Elsavier, 2017

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 2 Francois B'eguin and El'zbieta Frackowiak, "Supercapacitors", Wiley-VCH, 2013.
- 3 Yogita Bhoj, Gaurav Pandey, Anjali Bhoj, Maithri Tharmavaram, Deepak Rawtani, "Recent advancements in practices related to desalination by means of nanotechnology" Chemical Physics Impact 2,100025, 2021

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- i.1 Summarize the application of nanomaterials for energy and environment.
- i.2 Explain in detail the application of nanomaterials for various components in a Dye Sensitized Solar cell.
- i.3 Explain the basic electrochemistry of a Proton Exchange Membrane Fuel Cell.
- i.4 Briefly explain the electrode processes in Li ion batteries.
- i.5 List the advantages of functionalized CNTs in environmental applications.
- i.6 Explain various methods of hydrogen production and storage.
- i.7 Write a note on biodegradable polymers.
- i.8 Discuss the synthesis of polymers from Triacylglycerol Oils.

Semester II				
Elective Course				
Course Code:	Course Name:			
MSNST02DSE04	Nanomaterials in Everyday life			
Course Description				
The course introduces students to the application areas of nanomaterials in day to day life. Principles				
and properties of specific nanomaterials advantageous for particular applications are also covered.				
Detailed sections are included for application areas like food, drugs, agriculture, cosmetics, textile,				
paint and coating etc.				

Course Objectives

- 1. To learn the basic concepts of nanomaterials that can be explored for every day applications
- 2. To study the properties of nanomaterials to develop the knowledge on food and agricultural

applications of nanomaterials

3. To understand the idea of nanoengineered textiles and nanomaterial based cosmetics.

Credit		Teaching Hours			Assessment			
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
3	0	3	54	0	54	40	60	100

4. To impart theoretical knowledge on nanostructured coatings

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Explain the most common applications of nanomaterials
C02	Analyze the properties of nanomaterials for specific applications
C03	Explain the concept of nano-based food and food supplements
C04	Explain the principle and fabrication of nanostructured coaings
C05	Design nanomaterials for particular applications by optimising the materials and their size,
	shape, surface area etc

Module	Course Contents	No. of Hrs
1.0	Use of nanotechnology by the food and pharmaceuticals	
1.1	Food Ingredients for Colour, Materials for Texture and Flavour-mechanis	sm;
1.2	Food production and packaging- materials, Engineered water advantages, challenges	nanostrutures,
1.3	Nutrients and dietary supplements; Food safety; Food Nanosensors;	

1.4	Nanomaterials in oral tablets- Nanocomposites- polymers-inorganics.			
	Suggested Reading Specific to the module			
1.1	Food nanotechnology: proposed uses, safety concerns and regulations. Agro. Food Ind. Hitech. 27, 36–39.			
1.2	Bradley, E. L., Castle, L., and Chaudhry, Q. (2011). Applications of nar food packaging with a consideration of opportunities for developing cou Food Sci. Technol. 22, 603–610.	nomaterials in ntries. Trends		
1.3	Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder C., et al. (2009). Review of health safety aspects of nanotechnolo production. Reg. Toxicol. Pharmacol. 53, 52–62.	, A. S., Heer, ogies in food		
1.4	Application of polymer nanocomposite materials in food packaging. Croa Technol. 7, 86–94	ıt. J. Food Sci.		
2.0	Nanotechnology in Agriculture	20		
2.1	Nanomaterials in Plant germination; Effects of the types, properties, and c of nanomaterials on plant growth, seed germination and root and shoot g	concentrations rowth		
2.2	Properties of nanomaterials on various abiotic (salinity, drought, heat, h heavy metals) and biotic (pathogens and herbivores) stresses;	iigh light, and		
2.3	Pesticides and fertilizers-control of plant pests-insecticidal potential of nanomaterials- Antimicrobial activity-Antifungal activity-Nanomaterials to control plant viruses;			
2.4	Nanomaterials for plant pathogen detection; Pesticide residue detection			
Suggested Reading Specific to the module				
2.1	Jennifer Kuzma and Peter Ver Hage, "Nanotechnology in agriculture and food production", Woodrow Wilson International Center, 2006.			
2.2	Lynn. J, Frewer, Willehm Norde. R. H, Fischer and Kampers. W. H "Na in the Agri- food sector", Wiley-VCH Verlag, 2011.	notechnology		
2.3	Nanotechnology in agriculture: Prospects and constraints. Nanotechno	logy, Science		
	and Applications. 2014;7:63-71			
-----	--			
2.4	Applications of Nanotechnology in Agriculture in Applications of Nanobiotechnology			
	Edited by Margarita Stoytcheva and Roumen Zlatev, Intechopen.			
3.0	Nanotechnology in Cosmetics and Textiles			
3.1	Nano-variegation in cosmetics; Mineral-based cosmetic ingredients with nano-			
	sized dimensions;			
3.2	Nano-sized materials employed in cosmetics- fullerenes, nanotubes, liposomes,			
	quantum dots, dendrimers, metal nanostructures, hydrogels;			
3.3	Factors affecting the efficiency of nanostructures in cosmetics-size, shape,			
	surface area;			
3.4	Nano-engineered textiles- Properties: water and oil repellence- wrinkle			
	resistance-anti microbial properties-UV blocking-Strength enhancement;			
	Electronic and photonic technologies in textiles;			
3.5	Nano-engineered textiles for diverse application fields like in space, defense,			
	medicine etc; Future Directions.			
	Suggested Reading Specific to the module			
3.1	Mark. A, Ratner and Daniel Ratner, "Nanotechnology: A Gentle Introduction to			
	the Next Big Idea", Pearson, 2003.			
3.2	Morales ME, Gallardo V, Clarés B, García MB, Ruiz MA. Study and description			
	of hydrogels and organogels as vehicles for cosmetic active ingredients. J			
	Cosmet Sci. 2009;60:627–36.			
3.3	Fytianos, G., Rahdar, A., & Kyzas, G. Z. (2020). Nanomaterials in cosmetics:			
	Recent updates. Nanomaterials, 10(5), 979.			
2.4	Drown D. Lond Stoward, K. "Nanofiberg and Nanotochualogy in Tautilas"			
5.4	Brown, P. J and Stevens, K. Nanotibers and Nanotechnology in Textiles,			
	woodnead Publishing Limited, Cambridge, 2007.			
3.5	Brown. P. J and Stevens. K "Nanofibers and Nanotechnology in Textiles",			
	Woodhead Publishing Limited, Cambridge, 2007.			

4.0	Nanomaterials in paints and coatings					
4.1	Nanomaterials in Paints; Materials and methods- Different metal oxides in use.					
4.2	Advantages of Nanopaints - anti microbial properties-dust repellence- corrosion repellence					
4.3	Components: Pigment, thinner, binder and filler, Additives; Introduction to colour- changing paints					
4.4	Release behaviour and life cycle of nanopaints; Potential environmental benefits of nanomaterials in coating					
	Suggested Reading Specific to the module					
4.1	Kaiser, Jean-Pierre, Stefano Zuin, and Peter Wick. "Is nanotechnology revolutionizing					
	the paint and lacquer industry? A critical opinion." Science of the Total Environment					
	442 (2013): 282-289.					
4.2	Zhdanok, S. A., et al. "Influence of carbon nanomaterials on the properties of paint					
	coatings." Journal of Engineering Physics and Thermophysics 84.6 (2011): 1242-1247.					
4.3	Zhdanok, S. A., et al. "Influence of carbon nanomaterials on the properties of paint					
	coatings." Journal of Engineering Physics and Thermophysics 84.6 (2011): 1242-1247.					
4.4	Gottschalk, Fadri, and Bernd Nowack. "The release of engineered nanomaterials to the					
	environment." Journal of environmental monitoring 13.5 (2011): 1145-1155.					

- 1. Mark. A, Ratner and Daniel Ratner, "Nanotechnology: A Gentle Introduction to the Next Big Idea", Pearson, 2003.
- 2. Jennifer Kuzma and Peter Ver Hage, "Nanotechnology in agriculture and food production", Woodrow Wilson International Center, 2006.
- 3. Lynn. J, Frewer, Willehm Norde. R. H, Fischer and Kampers. W. H "Nanotechnology in the Agri- food sector", Wiley-VCH Verlag, 2011.
- Brown. P. J and Stevens. K "Nanofibers and Nanotechnology in Textiles", Woodhead Publishing Limited, Cambridge, 2007.

- 5. Fytianos, G., Rahdar, A., & Kyzas, G. Z. (2020). Nanomaterials in cosmetics: Recent updates. Nanomaterials, 10(5), 979.
- Kaiser, Jean-Pierre, Stefano Zuin, and Peter Wick. "Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion." Science of the Total Environment 442 (2013): 282-289.

- 1 Applications of Nanotechnology in Agriculture in Applications of Nanobiotechnology Edited by Margarita Stoytcheva and Roumen Zlatev, Intechopen.
- 2 Chang. W.N "Nanofibres fabrication, performance and applications", Nova Science Publishers Inc, 2009.
- 3 Zhdanok, S. A., et al. "Influence of carbon nanomaterials on the properties of paint coatings." Journal of Engineering Physics and Thermophysics 84.6 (2011): 1242-1247.

TEACHING LEARNING STRATEGIES

Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1. Write a note on the applications of nanomaterials in food packaging?
- 2. How can you improve the bioavailability in oral drug delivery?
- 3. What are the factors that affect the efficiency of nanomaterials used in cosmetics?
- 4. What are the different properties that can be imparted to nano-engineered fabrics?
- 5. Give a note on different metal oxide nanostructures used in nanomaterial based paints?

				Semester I	[
			E	lective cour	rse			
Со	urse Code:				Course N	lame:		
MSN	(ST02DSE)	05			Polymer S	science		
			Cou	rse Descrij	otion			
This cours	e deals with	h the basics	related to th	ne chemistry	y of polymer	rs. The cou	rse is divide	d into four
modules.	The first me	odules discu	iss about the	e introduction	on to polym	ers, its clas	sification a	nd some of
the comm	ercially imp	ortant poly	mers, its syn	nthesis and	properties. T	The final pa	rt of this m	odule deals
with differ	ent inorgar	nic polymers	s, their prop	erties and a	oplication.	The second	module dea	als with the
physical p	oroperties o	f polymers.	Details reg	garding son	ne of the sp	ecial polyr	ners are me	entioned in
module the	ree. Fourth	module deal	s with the fo	ormation of	polymer nan	locomposit	es, different	filler used,
and their p	properties.							
			Col	irse Objeci	lives			
1 Te	o understa	nd about th	e classifica	tion of pol	ymers.			
2 Te	2 To familiarize the students with the significance and determination of their molecular					molecular		
m	ass							
3 T	o underst	and in de	tail the re	action me	chanisms i	involved	in the for	mation of
pc	nolymers							
4 Te) acquire :	awareness	on the int	oducing c	omnatible i	nanofillers	in the for	mation of
n	lymer nan	ocomposit		outening e	omputione	lanomiers		indución or
рс	Cradit	locomposit	T	aching Ho	ure		Assassman	+
	Creun		10		ul 5		Assessmen	ι
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
3	0	3	54	0	54	40	60	100
		1	1	I	I	1	I	

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

COURSE OUTCOMES

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Identify and select a polymer for a particular application on the basis of their properties.
C02	Interpret the properties of polymer nanocomposites upon adding various fillers.
C03	Explain various applications of filler incorporated polymer nanocomposites.
C04	To acquire knowledge about special polymer materials in various field.

Module	Course Contents	14 Hrs		
1.0	Introduction to Polymers			
1.1	Introduction to polymer chemistry. Monomers, polymers, repe functionality. Nomenclature of polymers.	eating units,		
1.2	Classification - natural and synthetic, methods of polymerization (addition and		
	condensation), copolymerization. Some importance polymers; natural and	synthetic like		
	polythene, nylon, polyesters, bakelite, rubber.			
1.3	Inorganic polymers- importance, advantages and applications	s- structure,		
	preparation and properties of silicones and polyphosphazenes.			
	Suggested Reading Specific to the module			
1.1	Malcon P. Steves, Polymer chemistry-An introduction, 3rd edition, Oxford			
	University Press.			
1.2	F. W. Billmayer, Text book of Polymer Science, 3rd edition, John W	iley &Sons		
1.3	V. R. Gowariker, N. V. Viswanathan&J. Sreedhar, Polymer Science	ce, New Age		
	International Publishers.			
2.0	Molecular mass and size of polymers			
2.1	Degree of polymerization and molecular weight. Practical sig	nificance of		
	molecular weight. Threshold molecular weight. Concept of average	ge molecular		
	mass and molecular mass distribution.			

2.2	Number average, weight average and z average molecular mass and their
	calculation. Viscosity average molecular mass. Molecular mass distribution curve.
	Polydispersity and polydispersity index of polymers.
2.2	Energy las of manadismanad and naly dismanad nalymony. Malagular maga & machanical
2.3	Examples of monodispersed and polydispersed polymers. Molecular mass & mechanical
	properties. Size of polymer molecules.
	Suggested Reading Specific to the module
2.1	V. R. Gowariker, N. V. Viswanathan&J. Sreedhar, Polymer Science, New Age
	International Publishers.
2.2	P. Bahadur & N. V. Sastry, Principles of Polymer Science, Narrora Publishing
	House, 2nd Edition, New Delhi.
2.2	D D. L
2.3	Premamoy Gnosn, Polymer Science & Technology, 3rd edition, Tata McGraw
	Hill Education Pvt. Ltd., New Delhi.
3.0	Special Polymers
3.1	Fire retardant polymers, mechanism of fire retardency, fire retardants: halogen
	based, nitrogen based, phosphorous based, nanoparticles
3.2	Liquid crystalline polymers: properties, types and application
3.3	Biodegradable polymers, high temperature polymers: properties, types and application.
	Suggested Reading Specific to the module
3.1	D. Feldman and A. Barbalata, Synthetic Polymers, Chapmann and Hall.
3.2	Premamoy Ghosh, Polymer Science & Technology, 3rd edition, Tata McGraw
	Hill Education Pvt. Ltd., New Delhi.
3.3	G. Odian, Principles of polymerization, 3 rd edition, John Wiley &Sons.
4.0	Polymer Nanocomposites
4.1	Polymer nanocomposites: phase separated, intercalated, exfoliated.

4.2	Nanofillers: Carbon based-CNT and Graphene, layerd nanoclays, porous and hollow
	nanoparticles - halloysite, zeolite, Nanocellulose, metallic alloys, compatibilization of
	polymer nanocomposites,
4.3	Processing of polymer nanocomposites - insitu, blending, properties and
	application.
	Suggested Reading Specific to the module
4.1	G. S. Misra, Introductory Polymer Chemistry New age International Publishers &
	Distributors, New Delhi
4.2	V. K. Ahluwalia& A. Misra, Polymer Science-A Text Book, AneBooks, India,
	New Delhi.
4.3	J. R. Fried, Polymer Science & Technology, Prentice Hall of India Pvt. Ltd, New Delhi.
4.4	V. R. Gowariker, N. V. Viswanathan&J. Sreedhar, Polymer Science, New Age
	International Publishers.

- 1 Malcon P. Steves, Polymer chemistry-An introduction, 3rd edition, Oxford University Press.
- 2 F. W. Billmayer, Text book of Polymer Science, 3rd edition, John Wiley & Sons
- 3 V. R. Gowariker, N. V. Viswanathan&J. Sreedhar, Polymer Science, New Age International Publishers.
- 4 P. Bahadur & N. V. Sastry, Principles of Polymer Science, Narrora Publishing House, 2nd Edition, New Delhi.
- 5 Premamoy Ghosh, Polymer Science & Technology, 3rd edition, Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- 6 G. Odian, Principles of polymerization, 3 rd edition, John Wiley & Sons.

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

1 G. S. Misra, Introductory Polymer Chemistry New age International Publishers & Distributors, New Delhi

2 V. K. Ahluwalia& A. Misra, Polymer Science-A Text Book, AneBooks, India, New Delhi.

3 J. R. Fried, Polymer Science & Technology, Prentice Hall of India Pvt. Ltd, New Delhi. TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Discuss in detail about the filler materials used in the formation of polymer nanocomposites.
- 2 Explain the mechanism of fire retardant polymers.
- 3 Write a note on classification of polymers.
- 4 Explain the terms: polydispersive index, number average molecular mass, mass average molecular mass.
- 5 Discuss the classification and properties of polyphosphazenes.

Semes	ster II
Elective	Course
Course Code:	Course Name:
MSNST02DSE06	Nanopharmaceuticals
Course Do	escription
The course introduces students to the appli	cation areas of nanomaterials in drugs and
pharmaceuticals. Principles and properties	of specific nanomaterials advantageous for

pharmaceutical applications are also covered. Basic understanding of molecular cell biology required for the development of nanostructured pharmaceuticals are included.

Course Objectives

- 1. To learn the role of nanomaterials in Pharmaceutical industry
- 2. To study the properties of different nanomaterials depending upon their application as medicine
- 3. To develop knowledge on molecular cell biology
- 4. To understand the idea of nanostrctured diagnostic tools.

Credit			Teaching Hours			Assessment		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Explain the most common applications of nanomaterials in pharmaceuical industry
C02	Analyze the properties of nanomaterials for medicinal and diagnostic applications
C03	List the criteria for selection of nanostructures as drugs
C04	Explain the clinical translatability of drugs

Module	Course Contents	No. of Hrs		
1.0	Introduction to Nanophrmaceuticals	13		
1.1	Nanotechnology in pharmaceutical industry: Nano particle based of systems, Regenerative medicine, nano-immuno conjugates,	lrug delivery		
1.2	Bio-availability and delivery of nutraceuticals and functional nanotechnology,	foods using		
1.3	Tissue engineering/regenerative medicine, Nano-robotics in sur tools for early detection diseases, Nano-medicine for cancer treat delivery system	gery, Nano- tment, smart		
1.4	Guidelines for Evaluation of Nanopharmaceuticals in India			
Suggested Reading Specific to the module				

1.1	1. Nanopharmaceuticals: Principles and Applications, 3 volumes Ec	litors: Vinod				
	Kumar Yata, Shivendu Ranjan, Nandita Dasgupta, Eric Lichtfouse, Springer, 2.					
	Nanopharmaceuticals in Regenerative Medicine, Ed. Durgesh Nandini Chauhan					
	Harishkumar Madhyastha, CRC					
1.2	Nanonharmaceuticals in Regenerative Medicine, Ed. Durgesh Nandini Chauhan					
1.2	Harishkumar Madhvastha CRC					
13	Biopharmaceuticals: Biochemistry and Biotechnology by Gary Walsh Wiley-					
1.5	Blackwell; 2nd edition (2003)					
14	https://nib.gov.in/PressReleseDetail.aspx?PRID=1589101					
2.0	Essential Molecular Cell biology	14				
2.0	Molecular Cell Biology Cell- Structure & Function of Cell	Membrane				
2.1	Different cell trace and their Eurotices. Sub cellular Organeller and their					
	Functions					
2.2	Functions	1				
2.2	nucleotide, protein synthesis, unnatural amine acid					
	Machanistic understanding of various disasses and target identification for early					
2.3	detection					
aetection						
Suggestea Keaaing Specific to the module 2.1 Nalson D. L. Con M. M. and Labring A. L. (2000). D. i. i. h. C.						
2.1	Nelson, D. L., Cox, M. M. and Lenninger, A. L. (2009) Principles of					
	Biochemistry. IV Edition. W.H. Freeman and Co.					
2.2	Murray, R. K., Granner, D. K., Mayes, P. A. and Rodwell, V.W. (20	09) Harper's				
	Illustrated Biochemistry. XXVIII edition. Lange Medical Books/ M	lcGraw-Hill.				
2.3	Nanomaterials-Synthesis, Properties and Applications by A.S. E	delstein and				
	R.C Cammarata, Institute of Physics Publishing.					
3.0	Nanotechnology -based approaches in nanopharmaceuticals	14				
3.1	Nanopharmaceuticals in clinical translatability, Target Identification	on and Drug				
	designing: High-Throughput Screenings					
2.2	Affinity matrix approaches: On boad affinity matrix Diotin tag	a in offinity				
3.2	matrix Eluorescent tags in affinity matrix Dhoto affinity tags in aff	5 III allillity				
	main, multiceten lags in anning mains, Photo-anning lags in an	mity matrix.				
3.3	Drug western approaches, Three-hybrid system approaches: mR	NA display				

	approaches, Protein micro-array approaches, Drug affinity responsive target						
	stability						
	Suggested Reading Specific to the module						
3.1	Nanoparticulates as Drug Carriers Edited by Vladimir P.Torchilin, Imperial						
	College Press, (2006)						
3.2	Medical Nanotechnology in Nanomedicine, Harry F. Tibbals · 2017						
3.3	Drug target selection and validation, Marcus T. Scotti, Carolina L. Bellera,						
	Springer International Publishing, 2022						
4.0	Targeted drug delivery 13						
4.1	Multi-targeted drugs – delivery of nucleic acids- barriers to therapeutic						
	applications –interaction of organic molecules of the drug with pathological						
	tissue						
4.2	Ligand targeted nanoparticles drug delivery: combining multiple functions -						
	formation of nucleic acid core particle – protective steric coating						
4.3	Surface exposed ligands targeting specific tissues						
	Suggested Reading Specific to the module						
4.1	Surface Modification of Nanoparticles for Targeted Drug Delivery, Springer						
	International Publishing , Yashwant V Pathak · 2019						
4.2	Surface Modification of Nanoparticles for Targeted Drug Delivery, Springer						
	International Publishing , Yashwant V Pathak · 2019						
4.3	Targeted Drug Delivery : Concepts and Design, Springer International						
	Publishing, Padma V. Devarajan, Sanyog Jain · 2014						

- Nanopharmaceuticals: Principles and Applications, 3 volumes Editors: Vinod Kumar Yata, Shivendu Ranjan, Nandita Dasgupta, Eric Lichtfouse, Springer,
- 2 Nanopharmaceuticals in Regenerative Medicine, Ed. Durgesh Nandini Chauhan Harishkumar Madhyastha, CRC
- 3 Biopharmaceuticals: Biochemistry and Biotechnology by Gary Walsh Wiley-Blackwell; 2nd edition (2003)
- 4 Surface Modification of Nanoparticles for Targeted Drug Delivery, Springer

International Publishing , Yashwant V Pathak · 2019

- 5 Targeted Drug Delivery : Concepts and Design, Springer International Publishing, Padma V. Devarajan, Sanyog Jain · 2014
- 6 Murray, R. K., Granner, D. K., Mayes, P. A. and Rodwell, V.W. (2009) Harper's Illustrated Biochemistry. XXVIII edition. Lange Medical Books/ McGraw-Hill.

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Molecular Biology of the Cell, Garland publications, Bruce Alberts · 2004
- 2 Basic Fundamentals of Drug Delivery, Elsevier Science, Rakesh Kumar Tekade, 2018
- 3 Exploring the Potential of Nanopharmaceuticals: Extending our Focus Beyond Conventional Drugs, Frontiers Media SA, Alam Zeb, Amirali Popat, Faisal Raza, Hussain Ali, Saeed Ahmad Khan, 2022

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1. Write a note on the applications of nanomaterials in neutaceuticals and functional foods?
- 2. How can you improve the bioavailability of drugs in nanostructured drugs?
- 3. Give a detailed account on various affinity matrix approaches in drug delivery?
- 4. What are the different hybrid system approaches in drug delivery?
- 5. Give a note on mRNA display approaches?

	Interdisciplinary/ Multi-disciplinary Course							
	Сог	irse Code:				Course Na	ame:	
	MSNST02IDC01 Composite Materials							
			Cou	rse Descrip	tion			
<u></u>	• • • • • •		1 . 1	1 11 1	· 1 1		•, , , •	. 1 . 1 . 1
This is an	interdiscipli	inary course	, designed i	to build a ba	sic knowled	ige of comp	osite materi	als, which
integrates	the principl	es of chemis	stry, biology	y and nanos	cience. It pr	ovides a cle	ar idea abou	it different
types of co	omposites, a	and their cla	ssification b	based on the	constituent	materials. I	Furthermore	, the study
extends to	recent deve	lopments in	composites	which inclu	de the appli	cations of va	arious nanoc	omposites
in differen	t areas.							
			Cou	arse Object	ives			
1 To 1	ntroduce s	tudents the	basic conc	cepts of nar	ocomposit	es. their cl	assification	based on
mat	riv and rei	nforcement	materials	and their a	nlications	in differer	nt areas	
mai			materials		ppilcations		it alcas.	
2 To 1	make stude	ents aware of	of recent d	evelopmen	ts and utili	zation of d	ifferent nai	10compo-
site	s in various	s fields suc	h as aerosp	bace, dentis	try, energy	storage et	с.	
3 To	train the stu	udents abou	ut the role a	and selection	on of differ	ent reinfor	cement ma	terials for
desi	gning com	posites wit	h desired p	properties.				
4 To	understand	various na	nocompos	ite processi	ng method	S		
1 10	Cuadia	various na	T	a ahina Ua			• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u>.</u>
	Credit		reaching Hours				Assessment	,
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
				1			1	1

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

-

30

40

60

100

Course outcomes

2

-

Course Learning Outcomes: At the end of the course, the student will be able to -

30

2

C01	Explain the basic concepts of composites and their components.

C02	Classify composites based on the matrix and reinforcement materials used.
C03	Design nanocomposites for desired applications by proper selection of matrix and reinforcements.
C04	Analyze different properties of composites in comparison with standard materials.
C05	List out recent developments and applications of composite materials in different areas.

Module	Course Contents	No. of hrs				
1.0	Introduction to Composite Materials	15				
1.0	introduction to composite Materials	15				
1.1	Introduction to composite materials, Classification based on Matrix Mater	ial -Polymer				
	matrix composites (PMC), Metal matrix composites (MMC), Ceramic matrix	x composites				
	(CMC)					
1.0		XX71 · 1				
1.2	Reinforcement Materials: Metallic, Polymer, Ceramic and Composite fibro	es, Whiskers				
	and Particulates, Nano-fillers used in polymer composites, Reinforcement fi	bres, Woven				
	fabrics and non-woven random mats.					
1.3	Properties of composites in comparison with standard materials, Application	is of metal,				
	ceramic and polymer matrix composites.					
	1 2 1					
1.4	Recent developments in Composites: Self-healing composites, antimicrobial composites,					
	stimuli response composites, self-adhesive composites, Micro and Nanocomposites,					
	Biocomposites and Carbon / carbon composites (Advantages and limitatio	ns of carbon				
	matrix).					
	Successful Dan line Successful to the successful					
	Suggestea Reading Specific to the module					
1.1	Mathews F.L. and Rawlings R.D., Composite materials: Engineering and Sc	ience,				
	Chapman and Hall, London, England, 1st edition, 1994.					
1.0						
1.2	Snarma S.C., Composite materials, Narosa Publications, 2000					
1.3	Mallick, P.K, Composite Materials Technology: Process and Properties, Har	iser, New				
	York, 1990.					

1.4	Yongjing Wang, Duc Truong Pham & Chunqian Ji Eileen Harkin-Jones (Re	eviewing
	Editor) (2015) Self-healing composites: A review, Cogent Engineering, 2:1	
2.0	Nanocomposites: Properties and Applications	15
2.1	Definition of nanocomposites, basic Constituent materials in Nanocomposites	sites
2.2	Role and Selection of reinforcement materials, Glass fibers, Carbon fibers, E	Boron Fibers,
	Natural fibers, Multiphase fibers, Aramid fibers.	
2.3	Particle reinforced composites, fiber reinforced composites, Core-Shell nand	ocomposites.
	Nanocomposite Processing Methods: In-situ polymerization techniqu	ue, Solution
	casting, Electro spinning, melt mixing. Properties of nanocomposites:	Mechanical,
	electrical, thermal and barrier properties	
2.4	Applications of nanocomposites in Aerospace, Coating, Hybrid Nanocompos	site materials
	for food packaging, graphene-carbon nanotube nanocomposite for ene	rgy storage
	applications, Nanocomposites for solar cells, nanocomposite materials for	Lithium-ion
	battery.	
	Suggested Reading Specific to the module	
2.1	Lubin - Handbook of composites – (Van Nostrand, 1982)	
2.2	Composite Polymeric Materials. R.P. Sheldon. Applied Science Publishers,	London.
	1982	
2.3	Singh, N.B. (Ed.). (2022). Nanocomposites (1st ed.). Jenny Stanford Publish	ing.
	https://doi.org/10.1201/9781003314479	
2.4	Javatissa, A. (Ed.). (2022). Applications of Nanocomposites (1st ed.). CRC 1	Press.
	https://doi.org/10.1201/9781003247074	
	https://doi.org/10/1201/2/010002/00/1	

- Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2003.
- 2 Introduction to Nano Technology by Charles. P. Poole Jr and Frank J. Owens; Wiley India Pvt. Ltd., 2003
- 3 HS Nalwa, American Scientific Publishers, Los Angeles, CA, 2004

- 1 Gowariker and Viswanathan, Polymer Science, Wiley Eastern, 1986
- 2 Bill Meyer, A Text Book of Polymer Chemistry, John Wiley & Sons, Singapore, 1994.
- 3 Yiu-Wing Mai and Zhong Zhen Yu, Polymer-Nanocomposites, CRC Press, 2006.

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Write a note on the classification of nanocomposites.
- 2 Explain general characteristics of nanocomposites.
- 3 Explain recent developments and potential applications of nanocomposites.
- 4 Write a note on the role and selection of reinforcement materials in the preparation of composite materials with desired properties.
- 5

Interdisciplinary/Multidisciplinary Course II						
Course Code: Course Name:						
MSNST02IDC02	Nanobiomaterials					
Course Description						
This course provides basic overview of nanobiomaterials and their applications. This course begins						
with a review of various types of nanobiomaterials. Subsequently the course covers processing						

methods of nanobiomaterials. Finally, application of nanobiomaterials in bio-medical fields is discussed.

Course Objectives

- 1 To explain the vital role of nanobiomaterials in biomedical field.
- 2 To provide an overview of nature and properties of nanobiomaterials
- 3 To explore the different processing methods of nanobiomaterials.
- 4 To get an idea of the different types of nanobiomaterials based on structure and properties.
- 5 To understand the recent trends and application of nanobiomaterials.

Credit			Те	aching Ho	urs	Assessment		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
2	0	2	30	0	30	40	60	100

L/T: Lecture/Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Demonstrate the role of nanobiomaterials in biomedical field.
C02	Design different processing methods to engineer nanobiomaterials.
C03	Compare different types of nanobiomaterials based on structure and properties.
C04	Discuss the applications of nanobiomaterials in various medical field.
C05	Perform a critical analysis on the current research areas in nanobiomaterials.

Module	Course Contents	No of hrs
1.0	Overview of Biomaterials	15

1.1	Introduction- Biomaterials: -Impact of Biomaterials-Characteristics of Biomaterials-		
	Classification of Biomaterials-Metallic Biomaterials- Ceramic Biomaterials-		
	Polymeric Biomaterials-Composite Biomaterials.		
1.2	Nanobiomaterials: A New Generation Biomaterial-Processing of Nanobiomaterials-		
	Sol-gel Processing-Tissue Engineering Approach.		
1.3	Nanostructured Metallic Implants- Nanostructured Bio-ceramics-Polymeric		
	Nanobiomaterials		
1.4	Evolution of Nanocomposite Biomaterials-Nanocomposites: A New Class of		
	Nanobiomaterials- Conventional Nanocomposites-Tissue-Engineered		
	Nanocomposites.		
	Suggested Reading Specific to the module		
1.1	Nanobiomaterials: Classification, Fabrication and Biomedical Applications		
	Editor(s):X. W., M. Ramalingam, X. Kong, L. Zhao, (2018), Wiley-VCH		
1.2	Nanobiomaterials: State of the Art by J, Wang, H. Li, L. Tian, S. Ramakrishna (2011)		
	, Wiley-VCH		
1.2	Diamatarials A nano approach by S. Damakrishna, M. Damalingam, T.S. Sampath		
1.5	Kumar W.O.Sahavaja (2010) CBC Press		
	Kumai, w.O Soboyejo, (2010), CKC Fless		
1.4	Biomaterials-A nano approach by S. Ramakrishna, M. Ramalingam, T.S. Sampath		
	Kumar, W.O Soboyejo, (2010), CRC Press		
2.0	Applications of papehiamatarials 15		
2.0	Applications of nanobiomaterials.		
2.1	Biomedical Applications of Polymer Nanofibers-Dental Restoration-Wound		
	Dressing- Drug Delivery-Tissue Scaffolds		
2.2	Diamadical Applications of Composite Diamatorials Dana Errotura Danair Joint		
2.2	Biomedical Applications of Composite Biomaterials-Bone Fracture Repair-Joint		
	kepiacements-Dental Applications		
2.3	Nanobiomaterials for Tissue Regeneration-Nanobiomaterials: A New Generation		
	Scaffolding Material. Characteristics of a Scaffold.		
2.4	Types of Scaffolding Materials- Ceramic Nanobiomaterials- Polymeric		

	Nanobiomaterials			
	Suggested Reading Specific to the module			
2.1	Nanobiomaterials: Classification, Fabrication and Biomedical Applications			
	Editor(s):X. W., M. Ramalingam, X. Kong, L. Zhao, (2018), Wiley-VCH			
2.2	Nanobiomaterials: State of the Art by J, Wang, H. Li, L. Tian, S. Ramakrishna (2011),			
	Wiley-VCH			
2.3	Biomaterials-A nano approach by S. Ramakrishna, M. Ramalingam, T.S. Sampath			
	Kumar, W.O Soboyejo, (2010), CRC Press			
2.4	Biomaterials-A nano approach by S. Ramakrishna, M. Ramalingam, T.S. Sampath			
	Kumar, W.O Soboyejo, (2010), CRC Press			

- 1 Nanobiomaterials: Classification, Fabrication and Biomedical Applications Editor(s):X. W., M. Ramalingam, X. Kong, L. Zhao, (2018), Wiley-VCH
- 2 Nanobiomaterials: State of the Art by J, Wang, H. Li, L. Tian, S. Ramakrishna (2011), Wiley-VCH
- 3 Biomaterials-A nano approach by S. Ramakrishna, M. Ramalingam, T.S. Sampath Kumar, W.O Soboyejo, (2010), CRC Press

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Nanobiomaterials: Nanostructured Materials for Biomedical Applications, Edited by Roger Narayan, Woodhead Publishing(2017)
- 2 Nanobiomaterials Science, Development and Evaluation Editors-in-Chief: Mehdi Razavi and Avnesh Thakor (2017)

3 Fundamentals of Biomaterials by V. Hasirci, N. Hasirci, Springer (2018) TEACHING LEARNING STRATEGIES

Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Discuss the characteristics of a biomaterial with examples
- 2 Classify various types of biomaterials with suitable examples.
- 3 Compare the properties of biomaterial and nanobiomaterial.
- 4 Explain the concept of tissue engineering and describe its key applications in human systems
- 5 Describe the impacts of nanobiomaterials over conventional biomaterials

Interdisciplinary /Multidisciplinary Course III			
Course Code:	Course Name:		
MSNST02IDC03 Nanotechnology and Waste Manager			
Course Description			
The primary goal of the course is to increase student awareness of how nanomaterials interact in natural environments. This course will discuss the opportunities for nanotechnology to improve our quality of life, as well as the potential benefits of nanomaterials/nanotechnology for environmental applications. This course also deals with both the environmental and toxicological hazards associated with nanomaterials/nanotechnology and its waste management.			
Course Objectives			
1. To explain the vital role of nanomaterials in environmental science.			

2. To provide an overview of properties of nanomaterials in waste management

3. To explore the different methods of water treatment using nanomaterials.

4. To get an idea of the nanomaterial's safety management.

5. To understand the recent trends and application of nanomaterials in waste management and

reducing pollution.								
	Credit		Te	aching Ho	urs		Assessmen	t
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
2	0	2	30	0	30	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Describe the basic concepts of waste management
C02	Evaluate the nanomaterial toxicity and ecological effects in natural environments.
C03	Analyze the methods to improve the environment through direct application of nanomaterials for detecting, preventing, and removing pollutants
C04	Discuss the near term and future applications of nanomaterials in waste management
C05	Design different methods in waste management, controlling and reducing air pollution, water treatment, and nanomaterials safety.

Module	Course Contents	No of hrs
1.0	Nanomaterials in waste water management	15
1.1	Types of nanomaterials in waste management-nanofilters, nanophotocatalysts, and nanoparticles.	nanosensors,
1.2	Porous nanopolymers- Environmental catalysts-Nano biomaterials	
1.3	Nanotechnology: Water and Wastewater Treatment- Nanofilters- Nanophotocatalysts- Carbon nanotubes.	Nanoparticles-
1.4	Catalytic ceramic membranes, Ceramic membranes with zeolite c	coating- Nano-

	adsorbents		
Suggested Reading Specific to the module			
1.1	Benefits and Application of Nanotechnology in Environmental Science: an Overview- M. Taran , M. Safaei , N. Karimi , A. Almasi- Article in Biointerface Research in Applied Chemistry , Volume 11, Issue 1, 2021, 7860 - 7870		
1.2	Nanomaterials for Environmental Applications -A. A. Beni , H. Jabbari-Results in Engineering 15 (2022) 100467.		
1.3	Rationally engineered nanosensors: a novel strategy for the detection of heavy metal ions in the environment A. Numan, A.A.S. Gill, S. Rafique, M. Guduri, Y. Zhan, B. Maddiboyina, L. Li, S. Singh, N. Nguyen Dang, J. Hazard Mater, 409 (2021), 124493.		
1.4	Nanotechnology in Environmental Science, First Edition. Edited by C. M. Hussain and A. K. Mishra (2018), Wiley-VCH.		
2.0	Management of air pollution15		
2.1	Environmental nanosensors -Adsorption of toxic gases- Adsorption of dioxin- Adsorption of CO_2 - Removal of volatile organic compounds		
2.2	Nanomaterials to prevent air pollution-Nanostructured membranes- Catalysts- Nanosensors- Nanocoatings.		
2.3	Nanotubes and nanofiber- Organic-inorganic hybrid membranes		
2.4	Nanotechnology to prevent pollution- Eco-friendly materials- green production		
	Suggested Reading Specific to the module		
2.1	Benefits and Application of Nanotechnology in Environmental Science: an Overview- M. Taran, M. Safaei, N. Karimi, A. Almasi- Article in Biointerface Research in Applied Chemistry, Volume 11, Issue 1, 2021, 7860 - 7870		
2.2	Nanomaterials for Environmental Applications -A. A. Beni, H. Jabbari-Results in Engineering 15 (2022) 100467.		
2.3	Nanotechnology in Environmental Science, First Edition. Edited by C. M. Hussain and A. K. Mishra (2018), Wiley-VCH.		

2.4	Environmental and societal impact of nanotechnology-Babatunde, D.E.; Denwigwe,
	I.H.; Babatunde, O.M.; Gbadamosi, S.L.; Babalola, I.P.; Agboola, O. IEEE Access.
	2020, 8, 4640-4667.

- Benefits and Application of Nanotechnology in Environmental Science: An Overview-M. Taran, M. Safaei , N. Karimi , A. Almasi- Biointerface Research in Applied Chemistry , 11, 2021, 7860 – 7870
- 2 Nanomaterials for Environmental Applications -A. A. Beni, H. Jabbari-Results in Engineering 15 (2022) 100467.
- 3 Principles of hazardous materials management. Griffin, R.D. 2st edition. CRC Press, 2009.
- 4 Chapter 7-Nanotechnology: perspective for environmental sustainability -Fulekar, M.H.; Pathak, B.; Kale, R.K.,

Environment and Sustainable Development. Springer India, 2014; pp. 87-114

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Environmental Chemistry in Society (2nd edition)-Beard, J.M., (2013), CRC Press
- 2 Basic Concepts of Environmental Chemistry (2nd edition). Connell, D.W. (2005), CRC Press.
- 3 Principles of Environmental Chemistry (3rd edition). Girard, J. (2013), Jones & Bartlett.
- 4 Chemistry and the Environment. Harnung, S.E. & Johnson, M.S. (2012), Cambridge University Press.
- 5 Elements of Environmental Chemistry (2nd edition). Hites, R.A. (2012), Wiley & Sons.

TEACHING LEARNING STRATEGIES

Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Discuss the different types of nanomaterials involved in waste management
- 2 Describe the various methods involved in waste management process.
- 3 Analyse the use of nanosensors and nanofilters in waste management.
- 4 Explain the significance of nanotubes and nanofibres in management of air pollution.

Semester II						
Skill Enhancement Course						
Course Code:	Course Name:					
MSNST02SEC01	Scientific Analysis and Data Collection					

Course Description

This course introduces students with the basic skills for scientific analysis emphasizing on material characterization. A sound background of the basic principles of analysis is involved along with the skills for data collection and analysis.

Course Objectives

- 1. To teach the principles and practices of various material characterization techniques
- 2. To impart basic knowledge of spectroscopy techniques like Raman Spectroscopy, Photoluminescence Spectroscopy, UV-Vis Spectrophotometer etc.
- 3. To teach the students fundamentals of electrochemical characterizations like Cyclic Voltammetry, Galvanostatic Charge/Discharge, Electrochemical Impedance Spectroscopy etc
- 4. To teach the students on sample preparation methods for different analyses.

5. To make the students aware of data collection and analysis methods

Credit		Teaching Hours			Assessment			
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
2	0	2	30	0	30	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Explain the basic characterization methods for material characterization
C02	Prepare samples for spectroscopy tools
C03	Carry out basic electrochemical characterization methods
C04	Design sample specific analysis set ups for various electrochemical characterizations
C05	Collect and analyse data of different characterization techniques.

Module	Course Contents				
1.0	Scientific Analysis	15			
1.1	Introduction to materials and methods, Fundamentals of Materials Cha Basic operation	aracterization,			
1.2	UV-Vis Spectroscopy and Photoluminescence Spectroscopy (F Instrumentation, Qualitative and Quantitative Methodology and applicati	fundamentals, ons)			
1.3	XRD and Raman Spectroscopy (Principle, instrumentation and Microscopy techniques	applications),			
1.4	Introduction to Experimental Electrochemistry: Electrochemical Work GCD, EIS): Principle and Experimental set up	station, (CV,			
Suggested Reading Specific to the module					

1.1	An Introduction to Materials Characterization by P. R. Khangaonkar, Penram				
	International Publishing (India) Pvt. Ltd.				
1.2	Materials Characterization: Introduction to Microscopic and Spectroscopic Methods by				
	Y. Leng (Jun 2, 2008)				
1.3	Encyclopaedia of Materials Characterization C.R.Brundle, C.A.Evans Jr.,				
	and S.Wilson (eds), Butterworth-Heinemann, Stoneham, Ma				
	Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction". Prentice-				
	Hall, (2001).				
1.4	Bard and Faulkner, Electrochemical Methods, 2nd ed., Wiley, 2009				
2.0	Data Collection and analysis 15				
2.1	Basics of Data Collection and analysis: Execution of the research - Observation and				
	Collection of data				
2.2	Methods of data collection – Sampling Methods- Data Processing and Analysis				
	strategies – Numerical analysis. Figure Plotting: Figure insertions in documents				
2.3	Data interpretation of microscopic techniques like SEM, TEM and AFM-image				
	analysis, Elemental analysis and structural analysis, Processing and analysis of				
	Scientific images -ImageJ				
2.4	Error analysis: Basic interpretations, standard deviation, variation, correlation				
	coefficient etc. Usage of Packages like ORIGIN and EXCEL,				
	Suggested Reading Specific to the module				
2.1	Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New				
	Age International.				
2.2	Research Design, Qualitative, Quantitative and mixed methods approaches by				
	w.Creswell, third edition				
2.3	Collins TJ (July 2007). "ImageJ for microscopy". BioTechniques. 43 (1 Suppl): 25–30				
2.4	Research Design Qualitative Quantitative and mixed methods approaches by				
2.4	Research Design, Quantative, Quantitative and mixed methods approaches by				

W.Creswell, third edition

Core Compulsory Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 An Introduction to Materials Characterization by P. R. Khangaonkar, Penram International Publishing (India) Pvt. Ltd.
- 2 Materials Characterization: Introduction to Microscopic and Spectroscopic Methods by Y. Leng (Jun 2, 2008)
- 3 Lynn. J, Frewer, Willehm Norde. R. H, Fischer and Kampers. W. H "Nanotechnology in the Agri- food sector", Wiley-VCH Verlag, 2011.
- 4 Encyclopedia of Materials Characterization, C.R.Brundle, C.A.Evans Jr., and S.Wilson (eds), Butterworth-Heinemann, Stoneham, Ma.
- 5 Introductory Raman spectroscopy(Academic Press) J R Ferraro and K Nakamoto.
- 6 Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International
- 7 Research Design, Qualitative, Quantitative and mixed methods approaches by W.Creswell, third edition
- 8 Research Design, Qualitative, Quantitative and mixed methods approaches by W.Creswell, third edition

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Duckett, Simon; Gilbert, Bruce (2000). Foundations of Spectroscopy. Oxford Science Publication
- 2 Derek Pletcher, A First Course in Electrode Processes, 2nd ed., RSC Publish, 2009.
- 3 "Introduction to Electron Microscopy". FEI Company. p. 15.

TEACHING LEARNING STRATEGIES

Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

1. Write a note on the basic principle of UV-Vis spectroscopy?

2. Explain the prerequisites of samples for Raman spectroscopy and describe the principle?

3. Explain how to find the elemental composition of an unknown sample?

4. Give a detailed account on the scientific data collection and analysis?

Skill Enhancement Course II										
Co	Course Code: Course Name:									
MSN	ST02SEC	02	Technical Writing							
			Cou	ırse Descrij	otion					
Writing an	d commun	ication skill	is very mu	ch essential	to express s	cientific id	eas or result	ts clearly to		
validate th	eir significa	ance. For the	e successful	publication	of a researc	ch work, de	velopment o	of scientific		
writing sk	ill is essent	tial. The cou	urse is divid	led into two	modules.	The module	es discuss a	bout how a		
research p	roposal or 1	manuscript i	s written fo	or grant, for	publication	in journals	s etc. Also a	discussion		
on the imp	ortance of	seminars and	d workshop	s, presentat	ions in such	events was	mentioned			
			Co	urse Object	tives					
1 In	culcate sci	ientific writ	ting and co	ommunicat	ion skill					
2 Ui	nderstand	the basic et	hical issue	s confronte	ed by the so	cientist				
3 R.	ecognize th	he skill area	as the stude	ent would	like to deve	elop				
4 C1	reate aware	eness on the	e fundame	ntals of tec	hnology tra	ansfer				
	Credit Teaching Hours Assessment					ıt				
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total		
2	0	2	30	0	30	40 60 100				

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

COURSE OUTCOMES

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Develop skills related to presentation and publication of articles in seminar, book, journals
	etc.
C02	Understand the scientific paper or thesis writing skill
C03	Realize the ethical issues associated with scientific research and capable to analyze and
	address unethical situations
C04	Understand the fundamentals of technology transfer and issues related
C04	Understand the fundamentals of technology transfer and issues related

Module	Course Contents	15 hrs			
1.0	Scientific Writing and Communication Skill				
1.1	Writing Research report, research proposals. Every aspect of writing scientific				
	grants from funding agencies. Introduction to every aspect of g	rant writing,			
	including selecting funding mechanisms, writing individual grant	sections and			
	understanding administrative policies.				
1.2	Strategies for effective scientific writing-core elements of each sections-	Principles of			
	writing research manuscript by composing and editing the sections- Famili	arization with			
	reference manager- how to peer review an article from the perspective of a researcher-				
	reviewer- journal editor - complete and submit a research manuscript (based on an				
	abstract given), Plagiarism, Ethics, Patent filing				
	Suggested Reading Specific to the module				
1.1	The Craft of Scientific Writing, Michael Alley, 4th Ed. Springer, New York	, USA (2018).			
1.2	A Guide to the Scientific Career: Virtues, Communication, Research a	nd Academic			
	Writing Edited by Mohammedali M Shoja et.al, Wiley Black well (2019)				

1.3	Handbook of Science Communication by Anthony Wilson, Jane Gregory, Steve Miller,					
	Shirley Earl, IOP Publishing (1999).					
2.0	Research Presentation and Publication of Research Article 15 hrs					
2.1	Power point preparation- Introduction/preample, data display, discussion of results,					
	conclusion, time management, communication.					
2.2	Importance of conferences, seminars, workshops.					
2.3	Publication of a research article in journal: review of literature, status of research problem,					
	developments in research area, data analysis, presentation of results, writing articles,					
	ethics in publishing articles, copy right.					
	Suggested Reading Specific to the module					
2.1	Research methodology: (Concepts and Cases) Deepak Chawla, NeenaSondhi					
2.2	Research methodology (Methods and Techniques) CR Kothari, Gaurav Garg					

- The Craft of Scientific Writing, Michael Alley, 4th Ed. Springer, New York, USA (2018).
- 2 A Guide to the Scientific Career: Virtues, Communication, Research and Academic Writing Edited by Mohammedali M Shoja et.al, Wiley Black well (2019)
- 3 Research methodology (Methods and Techniques) CR Kothari, Gaurav Garg

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Research methodology: (Concepts and Cases) Deepak Chawla, NeenaSondhi
- 2 Handbook of Science Communication by Anthony Wilson, Jane Gregory, Steve Miller, Shirley Earl, IOP Publishing (1999).

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1. Discuss about different types of plagiarism.
- 2. Give examples to ethical violation in research.
- 3. Discuss the significance of literature review in research.
- 4. Give the characteristics of good technical writing.

Skill Enhancement III								
Course Code: Course Name:								
MSNST02SEC03 Laboratory Skills and Practices					s			
			Cou	rse Descrip	tion			
This cours	se provides	students w	ith an unde	erstanding o	f basic labo	oratory pro	cedures, saf	e working
practices u	ising essent	ial equipme	nt and prote	ocols. The c	ourse is des	igned to pr	ovide stude	nts with an
opportunit	y to gain ha	nds-on expe	erience in th	e synthesis	of nanopart	icles using	laboratory e	quipment.
			Cou	ırse Object	ives			
1 To de	velop expe	rimental sl	cills.					
2 To un	derstand th	e laborato	ry safety re	gulations.				
3 To lea	arn the han	dling of sc	ientific app	aratus and	instrument	ts.		
4 To de	velop prac	tical skill o	on different	methods o	fnanomate	erial synth	esis	
<u></u>	Credit Teaching Hours Assessment					t		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
2	0	2	30	0	30	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Perform laboratory experiments with proper safety measures.
C02	Demonstrate proper procedures for the safe handling of chemicals and laboratory waste management
C03	Formulate the conditions required for the synthesis of different types of nano materials.

Module	Course Contents
1.0	Laboratory Skills
1.1	General lab safety rules: Common rules that relate to almost every laboratory, Safety
	policies, First aid, Use of fire safety, Use of laboratory hood.
1.2	Safe Handling of Hazardous Chemicals: Introduction of hazardous chemicals, Rules for
	handling chemicals, Essential practices for handling hazardous chemicals, Laboratory
	waste management.
1.3	Storing, labeling, handling and personal hygiene: Storage and labeling of chemicals,
	Storage of Explosive and reactive hazardous chemicals, Transportation of hazardous
	chemicals
	Suggested Reading Specific to the module
11	Guidelines for Chemical Laboratory Safety in Academic Institutions Published by
	American Chemical Society
1.2	Richard L Lewis Sr. Sax's Dangerous Properties of Industrial Materials, 1995
1.2	Renard V. Zewis, Sur & Builgerous Properties of Industrial Materials, 1998
1.3	Peter Urben, Bretherick's Handbook of Reactive Chemical Hazards, Eighth Edition
2.0	Synthesis of Nanomaterials
2.1	Metal Nanoparticle Synthesis: Gold, Silver nanoparticle synthesis- green synthesis and
	chemical synthesis, analysis via UV-Vis spectroscopy. Mechanism of formation. Factors
	governing particle size.

2.2	Metal oxide Nanoparticle Synthesis: Titanium dioxide, Zinc oxide and Tin oxide synthesis via hydrothermal method and precipitation method. analysis via UV-Vis spectroscopy and XRD.			
2.3	Coprecipitation synthesis of magnetic (iron oxide) nanoparticles and analysis via XRD.			
Suggested Reading Specific to the module				
1.1	Nanotechnology principles and Practices, Sulabha K Kulkarani.			
1.2	Introduction to Nanoscience and Nanotechnology, by K K Chattopadhyay, PHI Learning Pvt. Ltd. New Delhi 2019, ISBN-13: 978-81-203-3608-7.			
1.3	Nanostructures and Nanomaterial Synthesis, Properties and Application, Guozhong Cao.			

- 1, Guidelines for Chemical Laboratory Safety in Academic Institutions, Published by American Chemical Society
- 2. Richard J. Lewis, Sr., Sax's Dangerous Properties of Industrial Materials, 1995
- 3. Peter Urben, Bretherick's Handbook of Reactive Chemical Hazards, Eighth Edition
- 4. Nanotechnology principles and Practices, Sulabha K Kulkarani.
- 5. Introduction to Nanoscience and Nanotechnology, by K K Chattopadhyay, PHI Learning Pvt. Ltd. New Delhi 2019, ISBN-13: 978-81-203-3608-7.
- 6. Nanostructures and Nanomaterial Synthesis, Properties and Application, Guozhong Cao

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- Prudent Practices in the Laboratory, Handling and Management of Chemical Hazards, Board on Chemical Sciences and Technology, The National Academies Press
- 2 Louis J. DiBerardinis, Janet S. Baum, Melvin W. First, Gari T. Gatwood, Anand K. Seth, Guidelines for Laboratory Design: Health, Safety, and Environmental Considerations

- 3 NANO: The Essentials- Understanding Nanoscience and Nanotechnology, by T Pradeep, Tata McGraw Hill Education Pvt. Ltd. New Delhi) ISBN-13: 978-0-07-061788-9
- Introduction to Nanoscience & Nanotechnology by Gabor L. Hornyak, Harry F. Tibbals, Joydeep Dutta, John J. Moore, CRC Press, Tylor & Francis Group New York, 2009. Publisher: CRC Press (15 December 2008) ISBN-13: 978-1420047790

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

Sample Questions to test Outcomes.

- 1 Discuss the various safety practices to be followed in the Laboratories of academic Institutes?
- 2 What are the essential practices to be followed while handling hazardous chemicals?
- 3 What are the precautions to be taken while handling a) Strong acids, b) explosive chemicals?
- 4 What are the factors that govern the size of nanoparticle during synthesis?
- 5 Explain the reason for the color shown by metal nanoparticles of different size.
- 6 List some of the reducing agents used in the synthesis of gold nanoparticles

Semester II				
Value Added Course				
Course Code:	Course Name:			
MSNST02VAC01	Certificate course in Advanced			
	Techniques for Characterization of			
	Materials			
Course Description				
Characterizations of materials are essential for the applications of the same in various fields				

of material science. This is also important in diverse fields, which includes chemical, microstructure and physical properties of different materials used as probes, sensors and in medical fields.

Course Objectives

The aim of the course is to provide the students with an overview of sophisticated instrumentation techniques emphasized with special reference to the principles, practice and applications of UV-Visible spectroscopy, X-ray diffraction, thermal and electrochemical techniques.

Credit			Teaching Hours			Assessment		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
2	0	2	30	0	30	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

COURSE OUTCOMES

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Explain the principles and operation of a range of advanced techniques such as
	UV-Visible spectroscopy, X-ray diffraction, thermal and electrochemical
	instruments used in characterization of various materials.
C02	Develop an idea about the crystal structure of materials and their by its structure - property relations.
C03	Understanding, from a microstructural point of view, the thermal properties of materials and related applications.
C04	Hand on experience of instruments and interpretation of results. Apply the skills gained in research and industrial explores

Module	Course Contents	No. of hrs
1.0	Spectroscopic Methods and X-ray Techniques	15 hrs
1.1	Theory of Ultraviolet and Visible Spectroscopy: Electronic trans	itions, radiative

	processes, energy diagram	
1.2	Internal conversion, conical intersection, Principle, solvent	effects,
	Instrumentation and applications of UV-Visible, spectroscopy, FT-IR	R Raman
	and Fluorescence spectroscopy	
1.3	Principle, Theory- X-ray spectral lines, instrumentation, Powder X	RD and
	Single crystal XRD, X-ray Diffraction, Analysis with X-ray dif	ffraction,
	applications.	
1.4	Chemical analysis using X-ray absorption, X-ray Fluorescence instrum	nentation
	and chemical analysis, Practical: Hands on experience of operation w	with UV-
	Vis-, Raman and data analysis.	
1.5	Practical: Instrumentation, sampling and hands on experience with inst	truments
	for analysis.	
	Suggested Reading Specific to the module	
1.1	Theory and Applications of UV Spectroscopy, H.H. Jaffe and M. Orch	hin,IBH-
	Oxford., Introduction to Spectroscopy, Pavia, Brooks/Cole Cenage, 4t	hedition,
	2009, Belmont.	
1.2	Fundamentals of Analytical Chemistry, Skoog, West, Holler, Croach, 7	Thomson
	Brooks/Cole;	
1.3	Elements of X-ray diffraction by B. D. Cullity	
1.4	Basics Of X Ray Diffraction And Its Applications by K Ramakanth He	bbar
1.5	Instrumental methods of chemical analysis, Willard, Dean and Merrit, A	Affiliated
	East West Press	
2.0	Thermal Studies and Electrochemical Studies	15
3.1	Theory: Introduction, specific heat, thermal conductivity, thermal ex	pansion,
	thermal stress, thermal stability. Relationship between structure and	thermal
	properties of materials. Thermo gravimetric methods of analysis	(TGA):
	Instrumentation, thermogram and information from thermogram,	factors
	affecting thermogram, applications TGA for quantitative analysis and p	problems
	based TGA.	
3.2	Differential Scanning Calorimetry (DSC): Principle, Instrum	entation,
	Applications Practical: Instrumentation, sampling, Hands on exper	ience of
	operation with DSC and TGA and interpretation of Data	
-------------	--	
3.3	Theory: Faradays laws of electrolysis, current - voltage relationship during an	
	electrolysis, operating cell at fixed applied potential, electrolysis at constant	
	working electrode potential. Coulometric methods of analysis. Voltammetric	
	principles, hydrodynamic voltammetry, stripping voltammetry,	
3.4	Cyclicvoltammetry (CV), Principle, criteria of reversibility of electrochemical	
	reactions, quasi-reversible and irreversible processes, apparatus, advantages and	
	limitations Instrumentation, sampling and application and interpretation of	
	cyclic voltammograms, Practical: Instrumentation, working, samplings, hands	
	on experience of operation CV and data analysis	
	Suggested Reading Specific to the module	
3.1	Thermal Analysis From Introductory Fundamentals to Advanced Applications	
	by El-Zeiny Ebeid Mohamed Zakaria Thermogravimetric Analysis by Jesse	
	Russell, Ronald Cohn	
3.2	Russell, Ronald Cohn Introduction to Thermal Analysis: Techniques and Applications: 1 (Hot Topics	
3.2	Russell, Ronald Cohn Introduction to Thermal Analysis: Techniques and Applications: 1 (Hot Topics in Thermal Analysis and Calorimetry) by M.E. Brown, Principles and	
3.2	Russell, Ronald Cohn Introduction to Thermal Analysis: Techniques and Applications: 1 (Hot Topics in Thermal Analysis and Calorimetry) by M.E. Brown, Principles and Applications of Thermal Analysis by Paul Gabbott	
3.2	Russell, Ronald Cohn Introduction to Thermal Analysis: Techniques and Applications: 1 (Hot Topics in Thermal Analysis and Calorimetry) by M.E. Brown, Principles and Applications of Thermal Analysis by Paul Gabbott Fundamentals of Analytical Chemistry, Skoog, West, Holler, Croach, Thomson	
3.2	Russell, Ronald Cohn Introduction to Thermal Analysis: Techniques and Applications: 1 (Hot Topics in Thermal Analysis and Calorimetry) by M.E. Brown, Principles and Applications of Thermal Analysis by Paul Gabbott Fundamentals of Analytical Chemistry, Skoog, West, Holler, Croach, Thomson Brooks/Cole	
3.2 3.3 3.4	Russell, Ronald Cohn Introduction to Thermal Analysis: Techniques and Applications: 1 (Hot Topics in Thermal Analysis and Calorimetry) by M.E. Brown, Principles and Applications of Thermal Analysis by Paul Gabbott Fundamentals of Analytical Chemistry, Skoog, West, Holler, Croach, Thomson Brooks/Cole Principles of Electroanalytical Methods by Tom Riley, Colin Tomlinson	

1. Instrumental methods of chemical analysis, Willard, Dean and Merrit, Affiliated East West

2. Principles of Electroanalytical Methods by Tom Riley, Colin Tomlinson

3. Fundamentals of electroanalytical chemistry (analytical techniques in the sciences) by Paul M.S. Monk

4. Instrumental methods of chemical analysis, Willard, Dean and Merrit, Affiliated East West

5. Elements of X-ray diffraction by B. D. Cullity

6. Fundamentals of Analytical Chemistry, Skoog, West, Holler, Croach, Thomson Brooks/Cole

1. Principles of Electroanalytical Methods by Tom Riley, Colin Tomlinson

Teaching Learning Strategies

• Assignments, Internal examinations, Seminars, Semester Viva Voce

Mode of Transaction

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes

- 1. Discuss the principle of X Ray crystallography.
- 2. Write down the Debye Scherrer formula for calculating grain size.
- 3.Briefly explain the principle of X Ray Flourescence.
- 4. What are the advantages of ATR over other IR sampling techniques?
- 5. Distinguish between TG, DTG and DTA?

Semester III				
Core Course				
Course Code:	Course Name:			
MSNST03DSC09	Semiconductor Nanomaterials and Nanolithography			
Course Description				

The course give a detailed description about the basics of semiconductors, its properties like conductivity, mobility, carrier concentration, doping concept etc in module one. The probability of carrier distribution in different temperature conditions and their related problems are included. Module two discuss about various semiconductor nanomaterials, their properties, its confinement in different dimensions and applications. Detailed steps involved in the process of different lithographic techniques, their advantages and disadvantages, resist materials specific for each technique are also included in module three. Module four give an in-depth idea related to the nanolithographic techniques using various tools.

Course Objectives

- 1 To learn about different semiconductors and its properties.
- 2 To impart knowledge about different areas of semiconductor application.
- 3 To develop an understanding of different doping methods, carrier concentration and conductivity of semiconductors.
- 4 To understand the basics of different lithographic techniques.
- 5 To understand different nanolithography techniques suitable for the design of various nanostructures.

Credit			Teaching Hours			Assessment		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
4	0	4	72	0	72	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Identify and choose semiconductor materials for a particular application.
C02	Realize the advantages and disadvantages of different lithographic techniques.
C03	Choose a particular lithographic technique for the designing of a nanostructure.

C04	Understand about different resist materials used in various lithographic
	techniques, their advantages and disadvantages.

Module	Course Contents	No. of Hrs
1.0	Basics of Bulk semiconductors	14
1.1	Introduction-Semiconductor, Types of semiconductors – elemental	, compound,
	direct and indirect band gap semiconductors.	
	Doping – diffusion, Fick's first and second law, ion implantation m	ethod, effect
	of doping and temperature on Fermi level position, Concept of eff	ective mass.
	Optical properties of semiconductors- Excitons-Phonons-	
1.2	Fermi-Dirac distribution function, probability of occupancy and non	-occupancy,
	Fermi level position in extrinsic and intrinsic semiconductors.	
1.3	Carrier concentration - concentration of electrons, concentratio	n of holes,
	intrinsic carrier concentration, hall effect.	
1.4	Carrier transport - drift and diffusion, mobility, current density a	nd electrical
	conductivity.	
	Suggested Reading Specific to the module	
1.1	Semiconductor physics and devices, Naemen Donald ISBN: 978007	/1070102
1.2	Physics of Semiconductor Devices, S M Sze, Kwok K Ng, Wiley In	dia Pvt Ltd.
1.3	Introduction to Solid State Physics, Charles Kittel, Wiley India Pvt	Ltd.
1.4	Solid State Physics, S O Pillai ISBN-13: 9789395161015.	
2.0	Semiconductor nanostructures	20
2.1	Quantum confinement in one, two and three dimensions: qua	ntum wells,
	quantum wires, Quantum dots- Superlattices-Band Offsets-Quantur	n dot lasers.

	Requirements for an ideal semiconductor nanostructure.
2.2	Epitaxial growth of quantum wells -Lithography and etching Induced dots and
	wires - Electro statically induced dots and wires.
2.3	Semiconductor nanocrystals - Colloidal quantum dots-Self-assembly techniques
	- Physical processes in semiconductor nanostructures.
	Suggested Reading Specific to the module
2.1	Nanostructures and Nanomaterial Synthesis, Properties and Application,
	Guozhong Cao.
2.2	Nanolithography and Patterning Techniques in Microelectronics, David
	Bucknall.
2.3	Colloidal Quantum Dot Optoelectronics and Photovoltaics, Gerasimos
	Konstantatos and Edward H. Sargent
3.0	Basics of Lithography20
3.0 3.1	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask
3.0 3.1	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection –
3.0 3.1	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection – Enhancement – overlay accuracies. Positive and negative photoresists, UV –
3.0 3.1	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection – Enhancement – overlay accuracies. Positive and negative photoresists, UV – photolithography for systems of 100 nm – Nano designs for electronic circuits.
3.0 3.1	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection – Enhancement – overlay accuracies. Positive and negative photoresists, UV – photolithography for systems of 100 nm – Nano designs for electronic circuits.
3.0 3.1 3.2	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection – Enhancement – overlay accuracies. Positive and negative photoresists, UV – photolithography for systems of 100 nm – Nano designs for electronic circuits. Etching – wet and dryElectron Lithography: Electron optics - Raster scan and Vector scan - Electron
3.0 3.1 3.2	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection – Enhancement – overlay accuracies. Positive and negative photoresists, UV – photolithography for systems of 100 nm – Nano designs for electronic circuits. Etching – wet and dryElectron Lithography: Electron optics - Raster scan and Vector scan - Electron proximity / Projection Printing, Electron resists.
3.0 3.1 3.2 3.3	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection – Enhancement – overlay accuracies. Positive and negative photoresists, UV – photolithography for systems of 100 nm – Nano designs for electronic circuits. Etching – wet and dryElectron Lithography: Electron optics - Raster scan and Vector scan - Electron proximity / Projection Printing, Electron resists.X – ray Lithography: Proximity printing - X-ray masks - X-ray sources -
3.0 3.1 3.2 3.3	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection – Enhancement – overlay accuracies. Positive and negative photoresists, UV – photolithography for systems of 100 nm – Nano designs for electronic circuits. Etching – wet and dryElectron Lithography: Electron optics - Raster scan and Vector scan - Electron proximity / Projection Printing, Electron resists.X – ray Lithography: Proximity printing - X-ray masks - X-ray sources - Synchrotron radiation – Xray projection - X-ray resists, Application - LIGA.
3.0 3.1 3.2 3.3 3.4	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection – Enhancement – overlay accuracies. Positive and negative photoresists, UV – photolithography for systems of 100 nm – Nano designs for electronic circuits. Etching – wet and dryElectron Lithography: Electron optics - Raster scan and Vector scan - Electron proximity / Projection Printing, Electron resists.X – ray Lithography: Proximity printing - X-ray masks - X-ray sources - Synchrotron radiation – Xray projection - X-ray resists, Application - LIGA.Ion Lithography: Focused ion beam - Point sources of Ion - Ion column - Beam
3.0 3.1 3.2 3.3 3.4	Basics of Lithography20Optical lithography: Contact and proximity printing - Projection Printing – Mask alignment, Reflection and catadioptric projection - Refraction projection - Enhancement – overlay accuracies. Positive and negative photoresists, UV – photolithography for systems of 100 nm – Nano designs for electronic circuits. Etching – wet and dryElectron Lithography: Electron optics - Raster scan and Vector scan - Electron proximity / Projection Printing, Electron resists.X – ray Lithography: Proximity printing - X-ray masks - X-ray sources - Synchrotron radiation – Xray projection - X-ray resists, Application - LIGA.Ion Lithography: Focused ion beam - Point sources of Ion - Ion column - Beam writing – Focused Ion Beam Lithography - Masked Ion Beam Lithography - Ion

	Suggested Reading Specific to the module
3.1	Nanostructures and Nanomaterial Synthesis, Properties and Application,
	Guozhong Cao.
3.2	Robert W. Kelsall, Mark. Geoghegan, Ian W. Hamley, Nanoscale Science and
	Technology, John Wiley and Sons, 2005 ISBN 0470850868
3.3	James R. Sheats and Bruce W. Amith, "Microlithography Sciences and
	Technology", Marcel Dekker Inc., New York, 1998.
3.4	John N. Helbert, "Hand Book of VLSI Microlithography", Noyes Publication,
	USA, 2001.
4.0	Nanolithography techniques18
4.1	High – resolution E-beam Nanolithography - Resist Exposure Metrics – High
	resolution resists - Proximity Effects - Direct writing.
4.2	Proximal Probe Nanolithography: STM- material modification- resist exposure
	and oxidation, material deposition, material removal and etching, manipulation
	of single atom,- AFM - Dip pen Nano lithography - Resists & Imaging Layers
	for proximal probes - Anodic Oxidation – Nanoscratching.
4.3	Langmuir - Blodgett Film resists - Patterned synthesis of nanomaterials - Self-
	Assembled Monolayers Resists
	Suggested Reading Specific to the module
4.1	Nanolithography and Patterning Techniques in microelectronics, David
	Bucknall.
4.2	Nanolithography - the art of fabricating nanoelectronic and nanophotonicc
	devices and systems, Martin Feldman.
4.3	Nanostructures and Nanomaterial Synthesis, Properties and Application,
	Guozhong Cao.

- 1 Robert W. Kelsall, Mark. Geoghegan, Ian W. Hamley, Nanoscale Science and Technology, John Wiley and Sons, 2005 ISBN 0470850868
- 2 C.Y. Chang and S.M.Sze, "ULSI Technology", McGraw-Hill Companies Inc., Singapore, 1996.
- 3 John N. Helbert, "Hand Book of VLSI Microlithography", Noyes Publication, USA, 2001.
- 4 James R. Sheats and Bruce W. Amith, "Microlithography Sciences and Technology", Marcel Dekker Inc., New York, 1998.

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Nanostructures and Nanomaterial Synthesis, Properties and Application, Guozhong Cao.
- 2 Introduction to Nanoscience and Nanotechnology, by K K Chattopadhyay, PHI Learning Pvt. Ltd. New Delhi 2019, ISBN-13: 978-81-203-3608-7.
- 3 Nanotechnology principles and Practices, Sulabha K Kulkarani.

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Explain the principle and steps involved in photolithography.
- 2 Derive the expression to obtain the carrier concentration in semiconductors.
- 3 Explain the process of molecular beam epitaxy in the formation of superlattices.
- 4 Explain the principle behind the working of quantum dot lasers.

5 Discuss about the different high resolution resist materials used in electron beam lithography.

			S	emester l	II			
	Core Course							
	Course Code: Course Name:							
	MSNS	T03DSC1	0		Car	bon Nano	structures	ł
			Cou	rse Descri	iption			
The course	is divide	ed into four	r modules.	The first r	nodule co	vers the uni	que geome	etrical and
electronic	structur	e of car	bon nano	tubes, gr	raphene,	fullerenes	and othe	er carbon
nanomateri	ials. The	growth and	d synthesis	technique	es as well a	as experime	ntal charac	eterization
and device	applicat	ions of car	rbon nanor	naterials a	are conside	ered elabor	ately. The	reactivity
of fullerene	es, functi	onalizatior	reactions	of CNTs,	etc. are des	scribed in d	etail. The	properties
of these ma	aterials a	nd their sig	gnificance	in specific	e application	ons are also	included.	
			Cou	rse Objec	ctives			
1. To under	1. To understand the structure and bonding in basic carbon nanostructures like CNTs,							
fullerer	fullerenes and graphene							
2. To explore the method of synthesis and its role in imparting desired characteristics in the								
case of	case of various carbon based nanostructures							
3. To devel	lop awar	eness on th	ne properti	es of carbo	on nanoma	aterials		
4. To under	rstand va	rious spec	troscopic a	and micros	scopic tool	ls for the cl	naracteriza	tion of
nanoma	aterials.							
5. To explo	ore the va	rious appl	ication are	as of carb	on nanosti	ructures.		
	Credit		Tea	aching Ho	ours		Assessmen	nt
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
4	0	4	72	0	72	40	60	100
<u> </u>					•	•		

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01 Explain the evolution and various milestones in the development of carbon

	nanostructures
C02	Describe the crystal structure, nature of bonding, classifications etc of carbon
	nanostructures.
C03	Depict the different synthesis methods, growth mechanisms, reactions and properties
	of CNTs, fullerenes and graphene.
C04	Explain the different nanostructures like carbon onions, whiskers, cones and
	nanodiamonds etc. and their structure and properties.
C05	Identify various application areas of CNTs, fullerenes, graphenes and other special
	carbon nanostructures.

Module	Course Contents No. of Hrs					
1.0	Introduction to Carbon nanostructures	14				
1.1	Carbon molecules, nature of the carbon bond, new carbon structures	5				
1.2	Discovery of C60 structure of C60 and its crystal, Graphene-st	tructure and				
	bonding					
1.3	From a Graphene Sheet to a Nanotube, Single wall and Multi walled	l Nanotubes,				
	HACM ordering, Zigzag and Armchair Nanotubes, Euler's	Theorem in				
	Cylindrical and Defective CNTs					
1.4	structure and properties of Carbon nanowhiskers, Carbon oni	ons, carbon				
	nanocons, nanodiamonds, carbon dots etc.					
Suggested Reading Specific to the module						
1.1	Y. Gogotsi, Carbon nanomaterials, CRC, 2006					
1.2	Echegoyen, L, Diederich, F., and Echegoyen, L.E., Fullerenes:	Chemistry,				
	Physics, and Technology, Kadish, K.M. and Ruoff, R.S., Eds., Wiley	, New York,				
	2000.					
1.3	M. Meyyappan, Carbon Nanotubes, Science and applications, CRC,	2005				
1.4	Jacek D. Wrobel, Preparation and Characterization of Fullerenes,	Calif. State				
	University, Hayward, 1996.					
2.0	Synthesis and properties of Fullerenes	20				
2.1	Structure of Higher Fullerenes, Growth Mechanisms; Prod	luction and				

	Purification- Fullerene Preparation by Pyrolysis of Hydrocarbons, Partial
	Combustion of Hydrocarbons, Arc Discharge Methods, Production by Resistive
	Heating
2.2	Rational Syntheses of fullerenes- solid, liquid and gaseous state reactions
2.3	Physical Properties of Fullerenes-, Spectroscopic Properties, Thermodynamic
	Properties.
2.4	Chemical Properties- Hydrogenation and Halogenation, cyclopropanation
	reactions, Nucleophilic Addition to Fullerenes – [2+2], [3+2] and [4+2]
	cycloadditions.
2.5	Energy Applications, Electronic Applications and biological Applications of
	fullerenes
	Suggested Reading Specific to the module
2.1	Echegoyen, L, Diederich, F., and Echegoyen, L.E., Fullerenes: Chemistry,
	Physics, and Technology, Kadish, K.M. and Ruoff, R.S., Eds., Wiley, New York,
	2000.
2.2	Y. Gogotsi, Carbon nanomaterials, CRC, 2006
2.3	Natalia Kamanina, Fullerenes and Relative Materials: Properties and
	Applications, IntechOpen, 2018
2.4	Y. Gogotsi, Carbon nanomaterials, CRC, 2006
2.5	Carlos Benvegnu, Robert F. Verner, Handbook on Fullerene Synthesis,
	Properties and Applications, Nova Science Publishers, 2012
3.0	Carbon Nanotubes 20
3.1	The Structure of Carbon Nanotubes- Nomenclature, Structure of Single Walled
	Carbon Nanotubes and Structure of Multiwalled Carbon Nanotubes; Structure
	and Production of Further Tubular Carbon Materials
3.2	Characterization of Carbon Nanotubes- Raman Spectroscopy of Carbon
	Nanotubes: origin of bands, RBM mode,
3.3	Characterization of Carbon Nanotubes- Infrared Spectroscopy of Carbon
	Nanotubes, ESR-Spectroscopic Properties of Carbon Nanotubes, XRD.
3.4	Mechanical, Thermal Applications, Electronic Applications and biological
	Applications of CNTs
	Suggested Reading Specific to the module

3.1	M. Meyyappan, Carbon Nanotubes, Science and applications, CRC, 2005	
3.2	Carbon Nanotubes: Properties and Applications- Michael J. O'Connell.	
3.3	Nanotubes and Nanowires- CNR Rao and A Govindaraj RCS Publishing	
3.4	Michael J. O'Connell, Carbon Nanotubes Properties and Applications, CRC	
	Press, 2018	
4.0	Graphene 18	
4.1	Structure of graphene; Preparation of graphene - synthesis of graphene by	
	various physical and chemical methods and Purification	
4.2	Electronic Properties Band Structure of Graphene - Dirac points, Mobility and	
	Density of Carriers - Quantum Hall Effect	
4.3	Characterization of of graphene: XRD, XPS, UV-Vis spectroscopy, IR	
	Spectroscopy and Raman spectroscopy	
4.4	Mechanical, Thermal Applications, Electronic Applications and biological	
	Applications of graphene	
Suggested Reading Specific to the module		
4.1	Ajay K. Sood, C. N. R. Rao, Graphene Synthesis, Properties, and Phenomena,	
	Wiley, 2013	
4.2	Athanasios Mitropoulos, George Kyzas, Graphene Materials: Structure,	
	Properties and Modifications, IntechOpen, 2017	
4.3	Alan B. Kaiser, Viera Skakalova, Graphene: Properties, Preparation,	
	Characterization and Applications, Elsevier Science, 2021	
4.4	Jamie H. Warner, Fransizka Schaffel, Mark Rummeli, Alicja Bachmatiuk,	
	Graphene: Fundamentals and Emergent Applications Elsevier Science, 2012	

- 1. Y. Gogotsi, Carbon nanomaterials, CRC, 2006
- Juan Carlos Moreno-Pirajan, S.A Ilangovan, Sabu Thomas, Sarathchandran C., Handbook of Carbon-Based Nanomaterials, Elsevier Science, 2021
- 3. Nanotubes and Nanowires C. N. R. Rao and A. Govindaraj, RCS Publishing, 2005.
- Carbon Nanotubes: Properties and Applications Michael J. O'Connell, 1st Edition, CRC Press, 2018.

5. Physical properties of Carbon Nanotubes - R. Satio, G. Dresselhaus, M. S. Dresselhaus,

Imperial College Press, 1998.

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Nanoscale materials Luis M. Liz-Marzan, and Prashant V. Kamat, Springer, 2003
- 2. Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics And Transport Devices - S.V. Rotkin and S. Subramony (Editors), Springer, 2005.
- 3. Carbon Nanotechnology Liming Dai (Editor), 1st Edition, Elsevier Science, 2006.4

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1. How do you calculate the number of hexagonal faces in a fullerene structure if the number of Carbon atoms is 86?
- 2. How does the chirality of CNTs affect their electrical properties?
- 3. Define chiral angle in carbon nanotubes? How does it vary in the case of various kinds of CNTs?
- 4. Explain why C60 can be considered as a fairly good electron acceptor?
- 5. Explain the Generation and reactivity of fullerene carbenes by cyclopropanation reaction?
- 6. Explain the thermodynamic aspects of fullerenes?
- 7. Why CNTs are not semi metallic in nature?
- 8. How ESR spectra can be used to determine the purity of CNTs?

Semester III

Core Course								
Course Code: Course Name:								
	MSNS	T03DSC1	1		Na	anobiotecl	nology	
			Cour	rse Descri	ption			
Nanobiot	echnology	refers to t	he intersec	ction of bio	ology and i	nanotechno	ology. The	course is
divided	into four	modules.	The first	module	provides 1	basics of	biotechno	logy and
bioelectro	onics with	a special	emphasis	on very	large-scale	e integratio	on circuits	S. Second
module d	iscusses al	bout lipid,	protein an	d DNA na	notechnolo	ogy and bi	ological co	omputing.
Different	types of	bionanoco	mposites a	and their a	application	s are disc	ussed in n	nodule 3.
Module 4	provide a	brief idea	of applica	tions of na	nobiomate	rials in na	noanalytics	3.
			Cou	rse Objec	tives			
1. T	o acquire	thorough k	nowledge	of the basi	cs of biote	chnology a	and biolog	y inspired
C	oncepts							
2. To understand the parts that compose nature's nanomachines: lipids, DNA and pro-								
teins								
3. T	3. To gain familiarity with silicon neuron computational blocks							
4. T	4. To learn about the use of biological materials such as DNA for making nanohinges,							
nanowires and nanoglue								
5. To understand the basics of biological computing								
6. To get familiarize with the characterization methods for nanobiomaterials								
Credit Teaching Hours Assessment				t				
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
4	0	4	72	0	72	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Describe the structure of DNA, lipids and proteins.
C02	Explain how nature forms self-organizing supramolecular structures
C03	Explain about tiny rotating nanoturbines in living cells
C04	Summarize the applications of quantum dots in biological labelling
C05	Explain biological application of metal nanoparticles to label biomolecules

Module	Course Contents	No. of Hrs	
1.0	Basics of biotechnology	14 hrs	
1.1	Biology inspired concepts, biological networks, biological Neurons of neuronal cell	s,the function	
1.2	biological neuronal cells on silicon, modeling of neuronal cells by V spike -event generation, silicon neuron computational blocks, th neuron	/LSI circuits, nalamic relay	
1.3	Bioelectronics, molecular Processor, molecular electronics		
1.4	DNA analyzer as biochip, fusion genes microarray, spotted vs in-situ synthesized microarrays		
Suggested Reading Specific to the module			
1.1	Karl Goser, Peter Glösekötter, Jan Dienstuhl, "Nanoelectronics an Nanosystems: From transistors to molecular devices", Springer, 20	nd 004	
1.2	Christof M. Niemeyer and Chad A. Mirkin, "Nanobiotechnology (Applications and Perspectives", Wiley, 2004	Concepts,	
1.3	Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, Burkhard Raguse, "Nanotechnology Basic Science and Technologies", CRC Press, 2002	Emerging	

1.4	Anil K. Deisingh, Adilah Guiseppi-Wilson, and Anthony Guiseppi-Elie,			
	"Biochip Platforms for DNA Diagnostics", Microarrays, 271,2009			
2.0	Lipid and DNA Technology 18 hrs			
2.1	Nano-biometrics : introduction, lipids as nano-bricks and mortar, lipid structure:			
	self-organizing supramolecular structures			
2.2	Proteins: three dimensional structures using 20 amino acids-proteins in			
	nanotechnology: nanomotors			
2.3	Biological computing: A Protein based 3D optical memory based on			
	bacteriorhodopsin			
2.4	Structural and dynamic DNA nanotechnology, sticky ended cohesion, DNA			
	nanostructures, using DNA to build nano cubes and hinges, DNA as smart glue,			
	DNA as wire template, DNA computer			
Suggested Reading Specific to the module				
2.1	Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle			
	Simmons, Burkhard Raguse, "Nanotechnology Basic Science and Emerging			
	Technologies", CRC Press, 2002			
2.2				
	David S. Goodsell, Bionanotechnology: Lessons from Nature, wiley-Liss			
2.3				
	Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle			
	Simmons, Burkhard Raguse, "Nanotechnology Basic Science and Emerging			
	Technologies", CRC Press, 2002			
2.4	Jie Chao, Yunfeng Lin, Huajie Liu, Lianhui Wang and Chunhai Fan DDNA-			
	based plasmonic nanostructures, Mater. Today 480,1-10, 2015			
3.0	Bionanocomposites 20 hrs			
3.1	Natural nano composites – introduction, natural nano composite materials,			

	biologically synthesized nano structures			
3.2	Biologically derived synthetic nano composites, Layered particle-reinforced bionanocomposites			
3.3	Protein based bionanocomposites, DNA based bionanocomposites- polysaccharide based bionanocomposites, biologically inspired nano composites			
3.4	Nanotechnology in Agriculture (Fertilizers and pesticides).			
Suggested Reading Specific to the module				
3.1	Khalid Mahmood Zia, Farukh Jabeen, Saiqa Ikram, "Bionanocomposites: Green Synthesis and Applications", Elsevier, 2020			
3.2	Shakeel Ahmed, <u>Suvardhan Kanchi</u> , "Handbook of Bionanocomposites", Taylor and Francis group, 2018			
3.3	Yury Shchipunov, "Bionanocomposites: Green sustainable materials for the near future", Pure Appl. Chem., Vol. 84, No. 12, pp. 2579–2607, 2012			
3.4	Sunil Kumar Deshmukh, Mandira Kochar, Pawan Kaur, Pushplata Prasad			
	Singh, "Nanotechnology in Agriculture and Environmental Science", CRC Press, 2023			
4.0	Characterization methods for Nanobiomaterials 20 hrs			
4.1	Nanoanalytics, quantum dot biolabeling -passive and active targeting, methods			
	for binding targeting agents to quantum dots: direct binding and adapter mediated binding			
4.2	Nanoparticle molecular labels: Autometallography, immunogold labelling, immunogold silver staining			
4.3	Atomic force microscopy, AFM based Force spectroscopy, analysis of			
	biomolecular structure by AFM and molecular pulling-force spectroscopy–			

	complexes
4.4	Surface enhanced raman spectroscopy and surface plasmon resonance,
	biofunctionalized nanoparticles for SERS and SPR.
	Suggested Reading Specific to the module
4.1	Christof M. Niemeyer and Chad A. Mirkin, "Nanobiotechnology Concepts,
	Applications and Perspectives", Wiley, 2004
4.2	Peter M. Lackie, "Immunogold silver staining for light microscopy", Histo-
	chem Cell Biol,106, 9, 1996
4.3	Youngkyu Kim, Woong Kim, and Joon Won Park "Principles and
	Applications of Force Spectroscopy Using Atomic Force Microscopy" Bull.
	Korean Chem. Soc. 2016
4.4	Christof M. Niemeyer and Chad A. Mirkin, "Nanobiotechnology Concepts,
	Applications and Perspectives", Wiley, 2004

- Christof M. Niemeyer and Chad A. Mirkin, "Nanobiotechnology Concepts, Applications and Perspectives", Wiley, 2004
- Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, Burkhard Raguse, "Nanotechnology Basic Science and Emerging Technologies", CRC Press, 2002
- 3. David S. Goodsell, "Bionanotechnology : Lessons from Nature", Wiley-Liss, 2004

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1. Khalid Mahmood Zia, Farukh Jabeen, Saiqa Ikram, "Bionanocomposites: Green Synthesis and Applications", Elsevier, 2020
- Shakeel Ahmed, <u>Suvardhan Kanchi</u>, "Handbook of Bionanocomposites", Routledge Taylor and Francis group,2018

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION • Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 4. Write a note on artificial nervous systems.
- 5. Explain spike-event generation in artificial neurons.
- 6. Explain the formation of a Holliday junction and a stiff double crossover (DX) molecule.
- 7. Write a short note on DNA based computing.
- 8. Summarize the properties of bionanocomposites and their applications.
- 9. List out common methods for synthesizing starch blends-based bionanocomposites.
- 10. Explain the challenges associated with the application of quantum dots in bioimaging.
- 11. Give a short note on nanoparticle molecular labels.

Semester III			
Core Course			
Course Code: Course Name:			
MSNST03DSC12 Research Project			
Course Description			
The course aims at providing the students with an opportunity of performing a research project			
in the field of nanomaterials under supervision and to make them learn the scientific skills like			
literature review, data analysis, scientific writin	ng etc		
Course Objectives			
• To make the students carry out an individu	To make the students carry out an individual research-based project in the field of nanoscience		
• To acquire scientific problem solving skill	ls, data collection, analysis and report the research		
findings			

Credit			Teaching Hours			Assessment		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
0	4	4	0	200	200	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

COURSE OUTCOMES

Course Learning Outcomes: At the end of the course, the student will be able to

C01	Identify a problem area in a specific field and formulate new scientific questions
C02	Carry out a literature review based on the given keywords
C03	Propose a hypothesis to solve a particular problem
C04	perform a research project according to the proposed hypothesis
C05	Analyse the experimental results and represent the data accurately
C06	document results by writing a research report

Semester III				
Core Course				
Course Code:	Course Name:			
MSNST03DSC13	Industrial Visit			
Course Description				
Industrial visits are intended to provide the students an opportunity to interact with a live working				
industry or a premier institute. The students learn about the latest technological innovations and				
research and developments in different related fiel	ds which would help them to choose their career in			
the future.				
Course	Objectives			
To make the students				
1 To have an opportunity to interact with pr	ofessionals, entrepreneurs and academic experts			
2 To provide an insight into the real worki	ng environment and to have an exposure to cutting			
edge technologies and facilities				

Credit	Teaching Hours	Assessment

L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
0	2	2	0	0	0	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

COURSE OUTCOMES

Course Learning Outcomes: At the end of the course, the student will be able to

C01	Explain the functioning of the indu	stry/research labs, the principles they follow and
	the work management system.	
C01	Explain how the theories and princip	ples they have learned are being implemented in a
	live working industry.	
	Seme	ester III
	Electiv	re Course
	Course Code:	Course Name:
	MSNST03DSE07	Nano Medicine and Drug Delivery
		Systems
	Course I	Description
This co	ourse focuses on biomedical uses of na	anotechnologies. The course will cover
nanosc	ale advanced drug delivery systems fu	undamentals, design, synthesis, and uses. This
course	provides essential knowledge in field	of Nanomedicine.
	Course	Objectives
1	To get an overview of the exciting an	id emerging discipline of nanomedicine.
2	To understand the specific aspects of	nanomaterials as applied to biology and
	medicine	
3	To learn about the essential role of na	anosensors in medical field.
4	To understand the role of controlled	l, and targeted delivery systems for drugs and
	genetic materials using polymeric sys	stems, colloidal drug delivery systems.

5 To develop knowledge on different properties and structure of nanocarriers used for								
d	drug delivery							
Credit Teaching Hours Assessment				nt				
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End

Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Summarise the background and history of Nanomedicine
C02	Examine the role of nanosensors in medical field
C03	Apply the principles and technology in the design of controlled release drug delivery systems.
C04	List the criteria for selection of a drugs and nanocarriers for the development of novel drug delivery systems
C05	Interpret the formulation of novel nanoparticles-based drug delivery systems

Module	Course Contents	No of hrs
1.0	Prospect of Nano-Medicine	13 hrs
1.1	History of the idea – The Biological and Mechanical Tradition medicine - Taxonomy	ons – Nano-
1.2	Bio-Pharmaceuticals -Biomaterials-types of biomaterial biomaterials uses of biomaterials.	ls-composite
1.3	Implantable Materials – Implantable Devices – Biomateria implantable devices, Surgical Aids – Diagnostic Application	als used in s-Diagnostic

	Tools.
1.4	Genetic Testing - Imaging - Nanoparticles Probe- Case Analysis -
	Resiprocytes – Mechanical Artificial Red Cells-type of resiprocytes.
	Suggested Reading Specific to the module
1.1	Nanomedicine Technologies and Applications, (2nd Edition) by Thomas
	Webster, Elsevier.
1.2	Biopharmaceuticals: Biochemistry and Biotechnology by Gary Walsh Wiley-
	Blackwell; 2nd edition (2003)
1.3	Biomaterials and Implant Biocompatibility, A. Cîmpean and F. Miculescu,
	MDPI books
1.4	Imaging Genetics (1st Edition) by A. Dalca, K. Batmanghelich, M. Sabuncu,
	Li Shen, Elsevier.
2.0	Nanosensors 14 hrs
2.0	Nanosensors 14 hrs
2.0 2.1	Nanosensors14 hrsTypes of sensors in nanomedicine-Chemical and Molecular Sensors –
2.0 2.1	Nanosensors 14 hrs Types of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors.
2.0 2.1 2.2	Nanosensors14 hrsTypes of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors.–Force Nanosensors – Pressure Nanosensors – Thermal Nanosensors
2.0 2.1 2.2 2.3	Nanosensors14 hrsTypes of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors.–Force Nanosensors – Pressure Nanosensors – Thermal Nanosensors–Electric and Magnetic Sensing – Cellular Bioscanning – Non-invasive
2.0 2.1 2.2 2.3	Nanosensors14 hrsTypes of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors.–Force Nanosensors – Pressure Nanosensors – Thermal Nanosensors–Electric and Magnetic Sensing – Cellular Bioscanning – Non-invasive Neuroelectric Monitoring.–
2.0 2.1 2.2 2.3	Nanosensors14 hrsTypes of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors.–Force Nanosensors – Pressure Nanosensors – Thermal Nanosensors–Electric and Magnetic Sensing – Cellular Bioscanning – Non-invasive Neuroelectric Monitoring.–Magnetic Sensing – Turge of meansancing Accurtin Magnetic Sensing – Electric and
2.0 2.1 2.2 2.3 2.4	Nanosensors14 hrsTypes of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors.—Force Nanosensors – Pressure Nanosensors – Thermal Nanosensors—Electric and Magnetic Sensing – Cellular Bioscanning – Non-invasive Neuroelectric Monitoring.—Macrosensing – Types of macrosensing-Acoustic Macrosensing -Electric and Magnetic Macrosensing – Neural Macrosensing—
2.0 2.1 2.2 2.3 2.4	Nanosensors14 hrsTypes of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors.—Force Nanosensors – Pressure Nanosensors – Thermal NanosensorsElectric and Magnetic Sensing – Cellular Bioscanning – Non-invasive Neuroelectric Monitoring.Macrosensing – Types of macrosensing-Acoustic Macrosensing - Electric and Magnetic Macrosensing – Neural Macrosensing.
2.0 2.1 2.2 2.3 2.4	Nanosensors14 hrsTypes of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors.—Force Nanosensors – Pressure Nanosensors – Thermal NanosensorsElectric and Magnetic Sensing – Cellular Bioscanning – Non-invasive Neuroelectric Monitoring.Macrosensing – Types of macrosensing-Acoustic Macrosensing - Electric and Magnetic Macrosensing – Neural Macrosensing.Suggested Reading Specific to the module
2.0 2.1 2.2 2.3 2.4 2.1	Nanosensors 14 hrs Types of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors. Force Nanosensors – Pressure Nanosensors – Thermal Nanosensors Electric and Magnetic Sensing – Cellular Bioscanning – Non-invasive Neuroelectric Monitoring. Macrosensing – Types of macrosensing-Acoustic Macrosensing -Electric and Magnetic Macrosensing – Neural Macrosensing. Suggested Reading Specific to the module Nanosensors by Vinod Kumar Khanna, CRC Press (2016) Nanosensors by Vinod Kumar Khanna, CRC Press (2016)
2.0 2.1 2.2 2.3 2.4 2.4 2.1 2.2	Nanosensors 14 hrs Types of sensors in nanomedicine-Chemical and Molecular Sensors – Displacement and Motion Sensors. Force Nanosensors – Pressure Nanosensors – Thermal Nanosensors Electric and Magnetic Sensing – Cellular Bioscanning – Non-invasive Neuroelectric Monitoring. Macrosensing – Types of macrosensing-Acoustic Macrosensing -Electric and Magnetic Macrosensing – Neural Macrosensing. Suggested Reading Specific to the module Nanosensors by Vinod Kumar Khanna, CRC Press (2016) Handbook of modern sensors-Physics, Designs and applications (5 th edition)

2.3	Nanomedicine and Nanosafety-Recent Trends and clinical evidences, M. K.
	Das and Y. V Pathak, Springer.
2.4	Nanomedicine, Volume I: Basic Capabilities by R. A. Freitas Jr., Landes
	Bioscience.
3.0	Drug delivery basics 14 hrs
3.1	Ideal drug delivery systems-Needs and Requirements – Factors influencing the
	drug delivery– Localized and targeted drug delivery-Controlled drug delivery-
	Active targeting and passive targeting.
3.2	Nanostructured delivery systems-Advantages of nanostructured delivery
	systems- Properties of nanoparticles affecting drug delivery- Polymeric
	Nanoparticles as Drug Carriers-types of polymer carriers-preparation of
	polymeric nanocarriers.
3.3	Genetic Vaccine-examples-Liposomes- Structure-properties and drug delivery
	applications – Polymer Micelles as Drug Carriers – Types of polymer micelles-
	Recent Advances in Microemulsions as Drug Delivery Vehicles
3.4	Lipoproteins-Structure-properties and applications as Pharmaceutical Carriers
	– Solid Lipid Nanoparticles as Drug Carriers-Structure and properties.
	Suggested Reading Specific to the module
3.1	Nanomedicine in Drug Delivery, A. Kumar, H. M. Mansour, A. Friedman, E.
	R. Blough, CRC Press.
3.2	Nanomedicines Design, Delivery and Detection by M. Braddock
	The Royal Society of Chemistry (2016)
3.3	Understanding Nanomedicine- An Introductory Textbook by R. Burgess, CRC
	Press.
3.4	Nanomaterials-Synthesis, Properties and Applications by A.S. Edelstein and
	R.C Cammarata, Institute of Physics Publishing.

4.0	Nanocarriers 13 hrs
.4.1	Nanocapsules – A New Drug Delivery System- Nanocapsules preparation, Characterization and Therapeutic Applications – Dendrimers as
	Nanoparticulate Drug Carriers – structure and properties of dendrimers.
4.2	Cells and Cell Ghost as Drug Carriers – Cochleates as Nanoparticular Drug
	Carriers – Aerosols as Drug Carriers-Types of aerosols-Magnetic
	Nanoparticles as Drug Carriers.
4.3	Nanoparticulate Drug Delivery to the Reticuloendothelial System and to
	Associated Disorders - Delivery of Nanoparticles to the Cardiovascular
	System - Nanocarriers for the Vascular Delivery of Drugs to the Lungs -
	Nanoparticulate Carriers for Drug Delivery to the Brain.
4.4	Nanoparticles for Targeting Lymphatics – Polymeric Nanoparticles for
	Delivery in the Gastro-Intestinal Tract – Nanoparticular Carriers for Ocular
	Drug Delivery - Nanoparticles and Microparticles as Vaccines Adjuvants -
	Pharmaceutical Nanocarriers in Treatment and Imaging of Infection.
	Suggested Reading Specific to the module
4.1	Nanoparticulates as Drug Carriers Edited by Vladimir P.Torchilin, Imperial
	College Press, (2006)
4.2	Novel Drug Delivery Systems by Y. Chien, CRC Press, (2019)
4.3	Drug Delivery Systems by R. K. Tekade, Elsevier Science, (2019)
4.4	Controlled Drug Delivery: Fundamentals and Applications, Second Edition, J.
	Robinson, V. H. L. Lee, Taylor & Francis.

 Nano Medicines Edited by Dr.Parag Diwan and Ashish Bharadwaj, Pentagon Press(2006) ISBN 81-8274-139-4

- Nanoparticulates as Drug Carriers Edited by Vladimir P.Torchilin, Imperial College Press, (2006) ISBN 1-86094-630-5
- 14. Nanomedicine by K.A. Howard, T. V. Jensen, D. Peer, Springer
- Novel Drug Delivery Systems by D. K. Tripathi, A. Alexander, PharmaMed Press / BSP Books (2019)
- Drug Delivery Systems (second edition) by J.B. Cannon, M. A. Hollinger, and V. V. Ranade, CRC press.

- Novel Platforms for Drug Delivery Applications, S. Das, S. Thomas, P. P. Das, Elsevier Science, (2022)
- 2 Frontiers in Nanomedicine, Volume 1, M. L. Bondi, C. Botto, E. Amore, Bentham Science Publishers, (2015)
- 3 The Handbook of Nanomedicine, K. K. Jain, Springer Science & Business Media, (2008)

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 List some examples of implantable materials and devices used in nanomedicine.
- 2 Summarize the history of nanomedicine
- 3 Compare the principle and functions of chemical and molecular sensors.
- 4 Distinguish between pressure sensors and molecular sensors
- 5 Analyze the role of cells and cell ghosts as drug carriers.

- 6 Sketch the structure of dendrimers and its application in drug delivery.
- 7 Discuss the vascular delivery of drugs into lungs using nanocarriers
- 8 Examine the role of polymeric nanoparticles in the Gastro-Intestinal Tract.

	Semester III							
Elective Course								
	Cou	irse Code:				Course N	lame:	
	MSNST03DSE08 Organic Nanomaterials							
			Cou	rse Descri	ption			
This Cou	rse will inc	lude an in-	-depth discu	ussion of c	lifferent org	anic nanor	naterials an	d different
application	ns for this c	lass of mat	erial. Prepar	rative and s	synthetic app	proaches to	organized,	assembled,
discrete or	ganic nanor	naterials wi	ll be describ	oed in this o	course.			
			Coι	ırse Objec	tives			
1. To ex	plain differe	nt types of	organic nan	omaterials				
2. To un	derstand and	d apply the	applications	of organic	nanomateria	als		
3. To lea	Irn the prepa	rative meth	ods of organ	nic nanoma	terials			
4. To un nanos	derstand the	fundament	als of organ	ic nanomat	erials and se	lf-assemble	ed organic	
nunos	indetai es.							
Credit Teaching Hours Assessment								
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
3	0	3	54	0	54	40	60	100
L/T: Leo	cture/ Tutori	ial; P/I: Pra	actical/Intern	nship; CE:	Continuous	Evaluation	, ESE: End	Semester

Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	To Investigate the key aspects of organic nano materials
C02	To Interpret specific properties of organic nanomaterials
C03	To Classify different types of organic nanostructures.
C04	To Summarize the synthetic methods of organic nanomaterials

Module	Course Contents	No. of Hrs				
1.0	Basic concepts	14				
1.1	Introduction to organic nanomaterials- basic structure- size- size to volume	ratio				
1.2	Special properties-Comparison with inorganic nanomaterials- Significance					
1.3	Organic -Inorganic hybrid nanomaterials and its properties- Chemical Morphology	Composition-				
	Suggested Reading Specific to the module					
1.1	Organic Nanomaterials: Synthesis, Characterization, and Device Applications- T. Torres, G. Bottari (2013), John Wiley & Sons					
1.2	Single Organic Nanoparticles- H. Masuhara, H. Nakanishi, K. Sasaki, (2003), Springer Science & Business Media,					
1.3	Organic-Inorganic Hybrid Nanomaterials - S. Kalia, Y. Haldorai, Springer					
2.0	Types of organic nanomaterials	14				
2.1	Liposomes-structure and its properties- Dendrimers- structure and its polymeric micelles.	properties and				
2.2	Carbon based nanomaterials- tubes- wires- graphene- Organic Semicondulight emitting devices (OLEDs)	uctors-organic				
2.3	Polymer based nano materials- polymer conjugates- amphiphilic polym micelles- Vesicles-Nanocapsules-Structure and its properties	ners- Polymer				

	Suggested Reading Specific to the module	
2.1	Nanomaterials in Biomedical Application and Biosensors (NAP-2019): 244	by A. D.
	Pogrebnjak, M. Pogorielov, R. Viter, Springer Proceedings in Physics.	
2.2	Handbook of Carbon-Based Nanomaterials edited by Sabu Thomas	
	C. Sarathchandran. S.A. Ilangovan, J. C. Moreno-Piraján (2021), Elsevier	
2.3	Polymer Science and Nanotechnology Fundamentals and Applications ed	ited by R.
	Narain (2020) Elsevier Science	
3.0	Synthetic strategies	13
3.1	Top-down techniques-Milling- microfluidics and lithography-Nanofabrication	-
3.2	Bottom up-techniques-supramolecular self-assembly- solvent-free techniques a	and solvent
	displacement techniques-	
3.3	Divergent and convergent methods in dendrimers- interfacial polyr	nerization-
	nanoprecipitation- emulsion-diffusion, double emulsification.	
	Suggested Reading Specific to the module	
3.1	Organic Nanomaterials: Synthesis, Characterization, and Device Applications	-
	T. Torres, G. Bottari (2013), John Wiley & Sons	
3.2	Organic Nanomaterials: Synthesis, Characterization, and Device Applications	-
	T. Torres, G. Bottari (2013), John Wiley & Sons	
3.3	Polymer Science and Nanotechnology Fundamentals and Applications ed	ited by R.
	Narain (2020) Elsevier Science	
4.0	Applications of organic Nanomaterials	13
4.1	Organic nanomaterials for biomedical applications- organic nanomaterial	s as drug
	delivery systems.	
4.2	Dentistry-tissue engineering bone regeneration – osteolyelitis treatment-cancer	treatment.
4.3	Organic nanomaterials as sensors-food nanotechnology- Energy Applications-	Solar cells.

	Suggested Reading Specific to the module								
4.1	Nanomaterials in Biomedical Application and Biosensors by A. D. Pogrebnjak, M.								
	Pogorielov, R. Viter, Springer Proceedings in Physics.								
12	Nanomaterials in Biomedical Application and Biosensors by A. D. Pogrebniak, M.								
4.2	Nanomateriais in Diometrical Application and Diosensors by A. D. Fogreonjak, W.								
	Pogorielov, R. Viter, Springer Proceedings in Physics.								
4.3	Applications of Nanomaterials in Sensors and Diagnostics Edited by A. Tuantranon								
	(2013), SpringerLink								

1 Organic Nanomaterials: Synthesis, Characterization, and Device Applications-

T. Torres, G. Bottari (2013), John Wiley & Sons

2 Single Organic Nanoparticles- H. Masuhara, H. Nakanishi, K. Sasaki, (2003), Springer Science & Business Media.

3 Polymer Science and Nanotechnology Fundamentals and Applications edited by R. Narain (2020) Elsevier Science

4 Nanomaterials in Biomedical Application and Biosensors by A. D. Pogrebnjak, M. Pogorielov,R. Viter, Springer Proceedings in Physics.

5 Handbook of Carbon-Based Nanomaterials edited by Sabu Thomas C. Sarathchandran.
 S.A. Ilangovan, J. C. Moreno-Piraján (2021), Elsevier

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

 Nanostructures and Nanomaterials- Synthesis, Properties & applications by Guozhong Cao, Imperial college Press, (2006). Publisher: World Scientific Publishing Company; 2 edition (4 January 2011) ISBN-13: 978-9814324557

 Springer Handbook of Nanotechnology - Bharat Bhusan Publisher: Springer-Verlag (15 May 2006) ISBN-13: 978-35403436603.

3. Introduction to Nanoscale Science & Technology, Di Ventra, Evoy, Heflin, Springer Science, NY, 2004. Publisher: Springer; 1 edition (30 June 2004)

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Differentiate organic and Inorganic nanomaterials
- 2. Summarize the scope of organic nanomaterials in biomedical field
- 3. Discuss the various types of organic nanomaterials with examples
- 4. Describe the applications of organic nanomaterials
- 5. Discuss the structure and properties of liposomes.
- 6. Classify the organic nanomaterials based on their building blocks.
- 7. Discuss the synthetic method of organic nanomaterials
- 8. Examine the role of dendrimers in drug delivery.

	Semester III	
	ELECTIVE COURSE	
Course Code:	Course Name:	
MSNST03DSE09	Nanophotonics	
	Course Description	

The course provides the basics and principles of nanophotonics/ nano-optics. An introduction to the three cornerstones of the future photonic technologies, viz., nanophotonics, plasmonics, and metamaterials, covering their fundamentals and latest advancements are discussed. The nano-sized structures gives access to new optical properties and functionalities that are not available in bulk materials. The course will first cover the principles of photonic crystals, metal optics, surface plasmon resonance and their applications. The basics and applied aspects of nanophotonics i.e. controlling, guiding, and manipulating electromagnetic radiation at the nanoscale will be discussed.

Course Objectives

- 1 To provide a comprehensive view of nanoscale optical materials and photonics
- 2 To impart knowledge about how light interactw with nanostructures and the related phenomena.
- **3** To impart knowledge about the quantum confinement effect and optical properties of nanomaterials.
- 4 To impart knowledge about the concept of metamaterials: composite materials that have been nanostructured to obtain a specific dielectric response.

Credit			Teaching Hours			Assessment		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

COURSE OUTCOMES

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Identify different types of materials and know their typical optical properties.									
C02	Understand	the	atomic	mechanisms	of	different	optical	phenomena,	such	as

	absorption, scattering and emission.
C03	Express the quantum confinement effects in optical properties of materials.
C04	Examine plasmonic effects in metal nanoparticles

Module	Course Contents					
1.0	Foundation of Nanophotonics	14 hrs				
1.1	Photons and Electrons- a comparison of their similarities and di	ssimilarities,				
	confinement of photons and electrons.					
1.2	Optical interaction at the nanoscale: Axial localisation-Evanascent wa	ives, Surface				
	Plasmon, Total internal reflection.					
1.3	Lateral localisation- apertureless confinement and confinement with	aperture.				
	Suggested Reading Specific to the module					
1.1	Principles of Nano-Optics, Lukas Novotny and Bert Hecht.					
1.2	Introduction to Nanophotonics, Sergey V. Gaponenko, Cambridge University					
	Press, New York, ISBN-13 978-0-521-76375-2 (2010).					
1.3	Surface Plasmon Nanophotonics, Mark L. Brongersma, Pieter G. Kik	Χ.				
2.0	Quantum-Confined Materials	14 Hrs				
2.1	Nanoscale confinement of electronic interactions- quantum confine	ement effect,				
	Quantum confined structures: Quantum wells, Quantum wires, Qu	antum dots.				
	Optical transitions-absorption, Luminescence.					
2.2	Quantum confined stark effect, dielectric confinement effec	t,nanoscopic				
	interaction dynamics.					
2.3	Light propagation in nanostructures-nanowires, nano-waveguides,	Combining				

	emission and propagation: Nanolasers -laser basics, nanowire lasers.			
Suggested Reading Specific to the module				
2.1	Principles of Nanophotonics, M Ohtsu, K Kobayashi, T Kawazoe, T Yatsui and			
	MNuruse, CRC Press, 2008.			
2.2	Devices, Circuits and Systems: Nanophotonics, P P Yupapin, K Srinuanjan, S			
	Kamoldilok, Pan Stanford Publishing, 2013.			
2.3	Nanophotonics, Heve Rigneault and Jean–Michel Lourtioz, ISTE (2006).			
3.0	Photonic Crystals and Metamaterials 13 Hrs			
3.1	Basics concepts, Bandgap and band structures in two and three dimensional			
	lattices. Periodic structures in nature, Experimental methods of fabrication,			
	Photonic crystal fibers (PCF).			
3.2	Plasmonic enhancement of secondary radiation, classification of secondary			
	radiations, Enhancement of emission and scattering of light, Local density of states			
	in plasmonic nanostructures. Hot-spots in plasmonic nanostructures, Raman			
	scattering enhancement in metal-dielectric nanostructures, Luminescence			
	enhancement in metal-dielectric nanostructures			
3.3	Metamaterials concept; Effective medium theories: Maxwell-Garnett theory,			
	Bruggeman theory. Anisotropic mixtures: multilayers and wire media; Negative-			
	permittivity and negative-permeability metamaterials; Double-Negative			
	Materials.			
Suggested Reading Specific to the module				
3.1	Fundamentals of Photonics, 3rd Edition, Bahaa E. A. Saleh, Malvin Carl			
	Teich.(2019).			
	Photonic crystals: Physics and Technology, (Eds.) C. Sibilia, T. M. Benson, M.			
	Marciniak, T. Szoplik, (ISBN: 978-88-470-0843-4) (2008).			

3.2	Photonic Crystals, John D. Joannopoulos, Robert D. Meade, Joshua	N. Winn
3.3	Optical Metamaterials: Fundamentals and Applications, W. Cai and Springer	1 V. Shalaev
4.0	Nanophotonics for Diagnostics and Therapy	13 Hrs
4.1	Nanophotonics for Diagnostics – Surface plasmons on nanoparticles Raman spectroscopy based systems, Fluorescence based systems	and surfaces,
4.2	Nanophotonics bioimaging- magnetic resonance imaging, optica tomography, photoacoustic imaging, two – photon luminescence, QD imaging	ll coherence o's for invivo
4.3	Nanophotonics for therapy- Plasmonic photothermal therapy, pl therapy.	hotodynamic
	Suggested Reading Specific to the module	
4.1	Introduction to Biophotonics, Paras N. Prasad, (John Wiley and Jersey), ISBN: 0- 471-28770-9 (2003).	Sons, New
4.2	Plasmonic Biosensors: An Integrated View of Refractometric Detect Dahlin	ion, by A.B.
4.3	Fundamentals of Photonics, 3rd Edition. by Bahaa E. A. Saleh, Malv Teich.(2019)	in Carl

- Introduction to Nanophotonics, Sergey V. Gaponenko, Cambridge University Press, New York, ISBN-13 978-0-521-76375-2 (2010).
- 2 Fundamentals of Photonics, 3rd Edition, Bahaa E. A. Saleh, Malvin Carl Teich.(2019).
- 3 Photonic crystals: Physics and Technology, (Eds.) C. Sibilia, T. M. Benson, M. Marciniak, T. Szoplik, (ISBN: 978-88-470-0843-4) (2008).

4 Introduction to Biophotonics, Paras N. Prasad, (John Wiley and Sons, New Jersey), ISBN: 0- 471-28770-9 (2003).

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 1 Devices, Circuits and Systems: Nanophotonics, P P Yupapin, K Srinuanjan, S Kamoldilok, Pan Stanford Publishing, 2013.
- 2 Fundamentals of Photonics, 3rd Edition. by Bahaa E. A. Saleh, Malvin Carl Teich.(2019)
- 3 Principles of Nanophotonics, M Ohtsu, K Kobayashi, T Kawazoe, T Yatsui and MNuruse, CRC Press, 2008.

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Describe the principle and working of photonic crystal?
- 2 What is Quantum confinement effect?
- 3 Discuss the principle involved in photodynamic therapy.
- 4 Explain Maxwell–Garnett theory.

Semester III			
Multidisciplinary Elective Course			
Course Code:	Course Name:		
MSNST03MDC01	Introduction to Nanotechnology		

Course Description

This course provides basic overview of nanomaterials and their applications. The course includes the study of chemical composition, synthesis, characterization, application and environmental impacts of nanomaterials.

Course Objectives

- 1 To learn the basic concepts of nanoscience and nanotechnology
- 2 To develop the knowledge on the synthesis of nanomaterials
- 3 To impart the idea of different environmental impacts of nanotechnology
- 4 To understand the potential application areas of nanotechnology
- 5 To introduce basic tools and principles relevant to the nanoscale systems.

Credit			Teaching Hours			Assessment		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
4	0	4	72	0	72	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Summarise the background and history of Nanotechnology	
C02	Demonstrate different methods of synthesis of nanomaterials.	
C03	Analyze the environmental effects of nanotechnology	
C04	Apply the application of nanotechnology in various potential areas.	
C05	Apply knowledge of nanoscience and nanotechnology in design of different nanomaterials.	
Module	Course Contents	No of hrs
--------	--	---------------
1.0	Introduction to Nanotechnology	18hrs
1.1	Evolution of Nanotechnology- Nanomaterials in the Mediev Nanomaterials in Indian culture.	val History-
1.2	Feynmann's vision on Nano Science & technology-History nanotechnology- Major milestones.	of Modern
1.3	The concept of 'Grey goo'-Nanotechnology in nature-E Introduction to Nanomaterials	Biomimetics-
1.4	Siegel's classifications-Carbon based nanostructures-Special Nano	materials
	Suggested Reading Specific to the module	
1.1	G. Cao and Y.Wang, Nanostructures and Nanomaterials, 2nd E College	d., Imperial
1.2	Bharat Bhushan, "Springer Handbook of Nanotechnology", Barn 2004.	es & Noble
1.3	Mark. A, Ratner and Daniel Ratner, "Nanotechnology: A Gentle Int the Next Big Idea, Pearson, 2003.	troduction to
1.4	Introduction to Nanoscience, G.L. Hornyak, J. Dutta, H.F. Tibbal: CRC Press.	s, A.K. Rao,
2.0	Synthesis of Nanomaterials	18 hrs
2.1	Introduction to the synthesis of Nanomaterials-Top-down and approaches-Wet chemical synthesis methods-	Bottom-up
2.2	Gas phase production methods-Biological Synthesis-Physical nanomaterial synthesis Lithographic Techniques.	method of
2.3	Photolithography, positive and negative resist materials, exposure Ray lithography, synchrotron, LIGA, Ion beam lithography	methods X-
2.4	Introduction to Nanocomposites including polymer nanocomposite	es, Synthesis

	methods for various nanocomposite materials.
	Suggested Reading Specific to the module
2.1	Nanostructures and Nanomaterials- Synthesis, Properties & applications by
	Guozhong Cao, Imperial college Press, (2006), World Scientific Publishing
	Company; 2 edition (2011).
2.2	Nanomaterials and Nanochemistry by C. Brechignac.P. Houdy M. Lahmani,
	Springer-Verlag (2007). (For Unit III-Part I Chapter I)
2.3	James R. Sheats and Bruce W. Amith, "Microlithography Sciences and
	Technology", Marcel Dekker Inc., New York, 1998.
2.4	Mai. Y-W "Polymer Nano composites", Woodhead publishing, 2006.
3.0	Environmental impacts of Nanotechnology 18hrs
3.1	Various sources of nanomaterials in the environment-entry routs of
	nanomaterials to human body.
3.2	Cellular uptake of nanomaterials and biotoxicity-impact of nanomaterials on
	specific organs.
3.3	Effects of Nanomaterials on the Cardiovascular System- Nanomaterials in the
	Liver and Gastrointestinal Tract.
3.4	Effects of NP on the Nervous System- Nanomaterials as environmental
	pollutants: Air, water and soil.
	Suggested Reading Specific to the module
3.1	Challa S.S.R. Kumar, Nanomaterials: toxicity, health and environmental
	issues, Wiley-VCH, 2006.
3.2	Nanoscale Science and Technology, R. Kelsall, I.Hamley and M. Geoghegan,
	Wiley, 2005.

3.3	K. J Klabunde, R. M. Richards, Nanoscale Materials in Chemistry, 2nd Ed.,
	Wiley, 2009.
3.4	T. Pradeep, A text book of Nano Science and Technology, Tata McGraw-Hill
	Education, 2012.
4.0	Applications and Future aspects 18hrs
4.1	Introduction to the potential application areas of Nanotechnology- biological
	applications- metal nanoparticles-Nanorobotics-Drug delivery-liposomes-
	dendrimers- quantum dots -Photodynamic Therapy-Nanomaterials in bone
	substitutes and dentistry – Implants - CNT-based nanomaterials as scaffolds or
	implants in bone tissue.
4.2	Nanomaterials used in energy and environmental applications and their
	properties, Solar energy, solar cells, dye sensitized solar cell, organic solar cells-
	Nanomaterials for Environmental Remediation-Soil pollution-air pollution-
	water pollution.
4.3	Applications of nanomaterials in agriculture and food processing-
	Nanotechnology in Agriculture - Insecticides using nanotechnology –Potential
	of nano-fertilizers – Potential benefits in Nanotechnology in Food industry –
	Food processing - Packaging- Nanomaterials in cosmetics and textiles.
4.4	Defence and Aerospace applications- Detection and diagnostics of chemical and
	biological agents- Nanotechnology enabled bio chemical weapons -
	Nanotechnology based satellite communication system.
	Suggested Reading Specific to the module
4.1	Nanoparticulates as Drug Carriers Edited by Vladimir P.Torchilin, Imperial
	College Press, (2006)
4.2	Jingbio louise Liu, Sajid Bashir, Advanced Nanomaterials and their applications
	in Renewable energy, Elsevier, 2015.
4.3	Nanotechnology in agriculture and food production. Jennifer Kuzma and Peter

	Ver Hage, Woodrow Wilson International Center, 2006.
4.4	Margaret. E, Kosal, Nanotechnology for Chemical and Biological defence,
	Springer 2009

- 17. Brown. P. J and Stevens. K Nanofibers and Nanotechnology in Textiles, Woodhead Publishing Limited, Cambridge, 2007.
- 18. Biomedical Nanotechnology, Neelina. H, Malsch (Ed.), CRC Press 2005.
- Novel Drug Delivery Systems by D. K. Tripathi, A. Alexander, PharmaMed Press / BSP Books (2019)
- 20. Micro and nanotechnology for space systems the aerospace corporation, Helvajian. H and. Robinson. E.Y, Micrograph, 1997.
- A text book of Nano Science and Technology, T. Pradeep, Tata McGraw-Hill Education, 2012.

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 22. Novel Platforms for Drug Delivery Applications, S. Das, S. Thomas, P. P. Das, Elsevier Science, (2022)
- 23. Introduction to Nanoscience", S.M. Lindsay, Oxford
- 24. NANO: The Essentials- Understanding Nanoscience and Nanotechnology, by T Pradeep, Tata McGraw Hill Education Pvt. Ltd.

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

- 1 Sketch the structure of dendrimers and explain its properties.
- 2 Summarize the application of quantum dots in biomedical field
- 3 Give an account on endocytosis based cellular uptake of nanoparticles.
- 4 List the properties of blood brain barrier.
- 5 Compare exohedral and endohedral fullerenes with examples
- 6 Explain the various synthesis methods of graphene
- 7 Classify the different types of photoresist materials used in lithography
- 8 Discuss about the different areas of application of nanocomposites.

Semester IV				
Core	Course			
Course Code:	Course Name:			
MSNST04DSC14 External Research Project				
Course D	escription			
The course aims at providing the students with an opportunity of performing a research project				
in the field of nanomaterials under supervision and to make them learn the scientific skills like				
literature review, data analysis, scientific writing etc				
Course (Dbjectives			
• To make the students carry out an individu	al research-based project in the field of nanoscience			
• To acquire scientific problem solving skil	ls, data collection, analysis and report the research			
findings				

Credit			Teaching Hours			Assessment		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
0	12	12	0	480	480	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End

Semester Evaluation

COURSE OUTCOMES

Course Learning Outcomes: At the end of the course, the student will be able to

C01	Identify a problem area in a specific field and formulate new scientific questions

C02	Carry out a literature review based on the given keywords
C03	Propose a hypothesis to solve a particular problem
C04	perform a research project according to the proposed hypothesis
C05	Analyse the experimental results and represent the data accurately
C06	document results by writing a research report

Semester IV Elective Course				
MSNST04DSE10 Industrial Significance and Applications of Nanotechnology				
Course Description				

The course discusses about the application of nanotechnology in the different fields. Module one discusses about various biomedical application of nanomaterials like dentistry, drug delivery, cancer treatment, tissue engineering etc. Application of nanomaterial and technology in the field of agriculture, nanofertililers and its type, role of nanofertilizers in improving crop yield, advantages and disdvantages of nanofertilizers over conventional fertilizers are listed. Benefits of nanotechnology in food packaging are included. Various nanomaterial application in the field of nanocosmeceuticals and nanomaterial translocation and health risks are included. Improvement in properties of nanoparticle incorporated textile materials and its wide range application is listed in module three. Module four discuss about the application of nanomateriuals and technology in the field of defence and aerospace industry.

Course Objectives

- 1 To understand the application of nanomaterials and its derivatives in medical field.
- 2 To understand the advantages of using nanoparticles in the field of agriculture, food packaging etc.
- 3 To impart a knowledge on nanomaterial application in the field of cosmetics and textile industry.

4 T	o discuss a	about the p	oroperties of	of nanoma	terials for	its use in 1	nilitary an	d aerospace
in	industry.							
	Credit Teaching Hours Assessment				nt			
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Learn about different nanocomposite materials, its properties and application.
C02	Discover different areas of nanomaterial application.
C03	Realize the advantages and disadvantages of nanomaterial application in different fields like medical, agriculture, aerospace, military, food packaging etc.
C04	Realize the toxic effects of nanomaterials to environment.

Module	Course Contents	No. of Hrs
1.0	Biomedical Applications	13
1.1	Nanoparticles and Micro–organism- Biosensors- Bioreceptors properties - Biochips- Integrated nanosensor networks for detection a DNA based biosensors and diagnostics.	and their nd response-
1.2	Natural nanocomposite systems; spider silk, bones, shells - Nanomate substitutes and dentistry, Implants and Prosthesis – Tissue Engineerin	erials in bone ng
1.3	Neuroscience -Neuro-electronic Interfaces -Nanorobotics- Pl	hotodynamic

	Therapy - Protein Engineering - Nanosensors in Diagnosis-Drug delivery -
	Cancer therapy and other therapeutic applications.
	Suggested Reading Specific to the module
1.1	Neelina. H, Malsch (Ed.), "Biomedical Nanotechnology", CRC Press 2005.
1.2	Mai. Y-W "Polymer Nano composites", Woodhead publishing, 2006.
1.3	Bharat Bhushan, "Springer Handbook of Nanotechnology", Barnes & Noble
	2004.
2.0	Agricultural and Food Sector Applications14
2.1	Nanotechnology in Agriculture -Precision farming, Smart delivery systems -
	Insecticides using nanotechnology - Potential of nano-fertilizersInformation
	and communication technology- Sensors- RF identification- Food safety-
	Nanomaterial based Food diagnostics - Contaminant detection - Intelligent
	packaging- Nanoengineered Food ingredients- Potential risks to Nanofood to
	consumers.
2.2	Potential benefits in Nanotechnology in Food industry - Global Challenges-
	Product innovation and Process improvement- Consumer benefits- Food
	processing - Packaging Packing materials.
2.3	Physical properties- Improvements of mechanical and barrier properties-
	Antimicrobial functionality- Active packaging materials.
	Suggested Reading Specific to the module
2.1	Jennifer Kuzma and Peter Ver Hage, "Nanotechnology in agriculture and food
	production", Woodrow Wilson International Center, 2006.
2.2	Lynn. J, Frewer, Willehm Norde. R. H, Fischer and Kampers. W. H
	"Nanotechnology in the Agri- food sector", Wiley-VCH Verlag, 2011.
2.3	Mark. A, Ratner and Daniel Ratner, "Nanotechnology: A Gentle Introduction to

	the Next Big Idea", Pearson, 2003.
3.0	Applications in Textile and Cosmetics Sector14
3.1	Nanofibre production – Electrospinning and charge injection-method – morphological control- yarns and polymide nanofibers- Carbon Nanotube and Nanofibre Reinforced Polymer Fibres- multifunctional polymer nanocomposites
3.2	Improvement of polymer functionality- Nylon-6 nanocomposites from polymerization- Dyeable Polypropylene - nanocoatings and surface modifications.
3.3	Nano-filled polypropylene fibers - UV resistant, antibacterial, self-cleaning, flame retardant textiles – Lightweight bulletproof vests and shirts, Colour changing property, Waterproof and Germ proof, Cleaner kids clothes, Wired and Ready to Wear textiles.
3.4	Cosmetics; Formulation of Gels, Shampoos, Hair-conditioners–Nanomaterials in Sun-screen UV protection – Color cosmetics
	Suggested Reading Specific to the module
3.1	Brown. P. J and Stevens. K "Nanofibers and Nanotechnology in Textiles", Woodhead Publishing Limited, Cambridge, 2007.
3.2	Brown. P. J and Stevens. K "Nanofibers and Nanotechnology in Textiles", Woodhead Publishing Limited, Cambridge, 2007.
3.3	Mark. A, Ratner and Daniel Ratner, "Nanotechnology: A Gentle Introduction to the Next Big Idea", Pearson, 2003.
4.0	Defense and Aerospace Applications 13
4.1	Pathways to Physical protection- Detection and diagnostics of chemical and biological agents, methods- Chemical and Biological counter measures- Decontamination- Post exposure and pre-exposure protection and decontamination.

4.2	Nanotechnology enabled bio chemical weapons- Influence operations- Evasion of			
	medical countermeasures.			
4.3	Nanotechnology based satellite communication system- Guidance, Navigation			
	and control- Spacecraft thermal control- mini, micro, nanosatellite concepts-			
	Fiber optic and Chemical microsensors for space craft and launch support.			
1 1	Migra/Nana program and temperature generate for space missions			
4.4	Micro/Nano pressure and temperature sensors for space missions.			
Suggested Reading Specific to the module				
4.1	Margaret. E, Kosal, "Nanotechnology for Chemical and Biological defence, Springer			
	2009.			
4.2	Margaret. E, Kosal, "Nanotechnology for Chemical and Biological defence,			
	Springer 2009.			
4.3	Helvajian. H and. Robinson. E.Y "micro and nanotechnology for space systems"			
	the aerospace corporation, Micrograph, 1997.			

- 1 Mark. A, Ratner and Daniel Ratner, "Nanotechnology: A Gentle Introduction to the Next Big Idea", Pearson, 2003.
- 2 Bharat Bhushan, "Springer Handbook of Nanotechnology", Barnes & Noble 2004.
- 3 Neelina. H, Malsch (Ed.), "Biomedical Nanotechnology", CRC Press 2005.
- 4 Udo. H, Brinker, Jean-Luc Mieusset (Eds.), "Molecular Encapsulation: Organic Reactions in Constrained Systems", Wiley Publishers 2010.
- 5 Jennifer Kuzma and Peter Ver Hage, "Nanotechnology in agriculture and food production", Woodrow Wilson International Center, 2006.
- 6 Lynn. J, Frewer, Willehm Norde. R. H, Fischer and Kampers. W. H "Nanotechnology in the Agri- food sector", Wiley-VCH Verlag, 2011.
- 7 Brown. P. J and Stevens. K "Nanofibers and Nanotechnology in Textiles", Woodhead Publishing Limited, Cambridge, 2007.

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Mai. Y-W "Polymer Nano composites", Woodhead publishing, 2006.
- 2 Chang. W.N "Nanofibres fabrication, performance and applications", Nova Science Publishers Inc, 2009.
- 3 Helvajian. H and. Robinson. E.Y "micro and nanotechnology for space systems" the aerospace corporation, Micrograph , 1997.
- 4 Margaret. E, Kosal, "Nanotechnology for Chemical and Biological defence, Springer 2009.

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce

MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

- 1 Write a note on the modification of spider silk by inorganic nanomaterials.
- 2 Explain Colorimetric Nanosensors for the Diagnostics of Infectious Diseases.
- 3 Explain in detail how the electric field, magnetic field and thermal treatment are used for cancer therapy.
- 4 Explain the principle of flame retardant finish on nano-engineered fabric.
- 5 Write a note on nanocarriers for drug delivery.

Semes	ster IV
Elective	e Course
Course Code:	Course Name:
MSNST04DSE11	Nanoelectronics

Course Description

The course introduces students to the fundamentals of nanoelectronics, nanodevices, spintronics and molecular electronics. Quantum mechanics behind nanoelectronics along with other principles and the operations of the same are also covered. A detailed section on various kinds of FETs are also included in this course.

Course Objectives

- 1. To learn the basic concepts of nanoelectronics
- 2. To study the basic tools for micro and nanofabrication
- 3. To develop the knowledge on the different quantum electronic devices
- 4. To understand the idea of molecular electronics and bioelectronics.
- 5. To impart theoretical knowledge on different memory devices and sensors

Credit		Teaching Hours			Assessment			
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C02Analyze the different tools for micro and nano fabricationC03Distinguish between molecular electronics and bioelectronics.C04Explain the principle and fabrication of memory devices.	C01	Explain the basics of Nanoelectronics.
C03Distinguish between molecular electronics and bioelectronics.C04Explain the principle and fabrication of memory devices.	C02	Analyze the different tools for micro and nano fabrication
C04 Explain the principle and fabrication of memory devices.	C03	Distinguish between molecular electronics and bioelectronics.
	C04	Explain the principle and fabrication of memory devices.
C05 Summarize the different type of FETs and its properties	C05	Summarize the different type of FETs and its properties

Module	Course Contents	No. of Hrs
1.0	Basics of Nanoelectronics	14
1.1	Basics of nano electronics – Contribution of Nanoelectronics to Ma	ankind
1.2	Physical fundamentals – The birth of electronics – Phase shifters, j sensors and actuators	piezoelectric
1.3	Ultrasonic transducers, optical limiters, energy harvesters, MOSFE	Ts, The tools

	for micro and nano fabrication		
1.4	Basics of Lithographic techniques for nano electronic device	es-basics of	
	information theory.		
	Suggested Reading Specific to the module		
1.1	Hanson, Fundamentals of Nanoelectronics, Pearson Education, 200	9	
1.2	Livio Baldi, Marcel Van de Voorde, Robert Puers, Sebastiaan E.	van Nooten,	
	Nanoelectronics Materials, Devices, Applications, Wiley, 2021		
1.3	K.Goser, P. Glosekotter, J. Dienstuhl, Nanoelectronics and Nanosys	stems: From	
	transistors to molecular devices., Springer (2004)		
1.4	Nanotechnology: basic science and emerging technologies - M	ick Wilson,	
	Kamali Kannangara, Geoff Smith, Michelle Simmons, Burkha	ard Raguse,	
	Overseas Press (2005).		
2.0	Quantum Electronic Devices	14	
2.1	Basics of Quantum electronic devices - The journey from classica	l physics to	
	quantum physics: upcoming electronic devices		
2.2	Fundamentals to understand the evolution of quantum electronics- electrons in		
	mesoscopic structure		
2.3	short channel MOS transistor – split gate transistor – electron wave	e transistor –	
	electron spin transistor – quantum cellular automate – quantum dot array		
2.4	principles of Single Electron Transistor (SET) - SET circuit design -		
	comparison between FET and SET circuit design-Coulomb Blockade effect.		
	Suggested Reading Specific to the module		
2.1	Quantum Transport: Atom to Transistor, Supriyo Datta, Cambridge	e University	
	Press, 2005		
2.2	Dietrich Marcuse, Principles of Quantum Electronics, Elsevier Scie	ence, 1980	
2.3	Massimo Macucci, Quantum Cellular Automata: Theory, Experimentation and		
	Prospects, Imperial College Press, 2006		
2.4	Hanson, Fundamentals of Nanoelectronics, Pearson Education, 200	9	
3.0	Molecular Electronics and Bioelectronics	13	
3.1	Tunneling devices and super conducting devices - tunnelli	ng element	
	technology		
3.2	RTD – circuit design based RTD –Defect tolerant circuits		

2.2				
3.3	Molecular electronics – elementary circuits – flux quantum devices –			
	applications of super conducting devices			
3.4	Bioelectronics – molecular processor – DNA analyzer as biochip – DNA			
	computer – Quantum computer			
Suggested Reading Specific to the module				
3.1	Hans Koch, Heinz Lübbig, K.v. Klitzing, Single-Electron Tunneling and			
	Mesoscopic Devices, Springer Berlin Heidelberg, 1992			
3.2	C. Tejedor, E.E. Mendez, L.L. Chang, Resonant Tunneling in Semiconductors			
	Physics and Applications, Springer US, 2012			
3.3	Steven T. Ruggiero, Superconducting Devices, Elsevier Science, 2013			
3.4	Eugenii Katz, Itamar Willner, Bioelectronics, From Theory to Applications,			
	Wiley, 2006			
4.0	Memory Devices and Sensors 13			
4.1	Nano ferroelectrics - ferroelectric random access memories – introduction – Fe			
	RAM circuit design - ferroelectric thin film properties and integration -			
	Ferroelectric capacitors			
4.2	Sensors based on nanotubes and Nanowires (Metal Oxide nanostructures for			
	Gas flow, Temperature and strain sensors)			
4.3	Nano designs and Nano contacts - Molecular nanowires-Organic LED-			
	principle-fabrication-device architecture-application -limitations-			
4.4	Organic FETs- CNT and Graphene FETs, SiNW FET etc. electronic noses –			
	semiconductor sensor array			
	Suggested Reading Specific to the module			
4.1	Nanoelectronics and Nanosystems: From transistors to molecular devices.			
	K.Goser, P. Glosekotter, J. Dienstuhl, Springer (2004)			
4.2	Francisco J. Arregui, Sensors Based on Nanostructured Materials, Springer US,			
	2010			
4.3	N. Thejo Kalyani, Hendrik C. Swart, Sanjay J. Dhoble, Principles and			
	Applications of Organic Light Emitting Diodes (OLEDs), Elsevier Science,			
	2017			
4.4	Zhenan Bao, Jason Locklin, Organic Field-Effect Transistors, CRC Press, 2018			

- 1 Nanoelectronics and Nanosystems: From transistors to molecular devices. K.Goser, P. Glosekotter, J. Dienstuhl, Springer (2004)
- 2. Nanoelectronics and information technology: Advanced electronic materials and novel devices (2nd edition), Rainer Waser (Ed.), Wiley-VCH Verlag, Weiheim (2005).
- Nanotechnology: basic science and emerging technologies Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons, Burkhard Raguse, Overseas Press (2005).
- Transport in Nanostructures, D. K. Ferry and S. M. Goodwick, Cambridge Univ. Press. Cambridge, UK, 2001 Reprint, Ch. 4. 2. Physics of Semiconductor devices, J. P. Colinge and C. A. Colinge, Kluwer Academic Pub, 2002, Dordrech.
- Quantum Transport: Atom to Transistor, Supriyo Datta, Cambridge University Press, 2005

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

1 Nano and Molecular Electronics Handbook, Edited by Sergey Edward Lyshevski, CRC Press,

(2007).

- 3. Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder, Wiley
- Blanksby, S. J.; Bowie, J. H. (2005). "Carbanions: formation, structure and thermochemistry". The encyclopedia of mass spectrometry. Gross, Michael L., Caprioli, R. M. (1st ed.). Amsterdam: Elsevier.
- 5 Steric and Stereoelectronic Effects in Organic Chemistry, V. K. Yadav, Springer, 2016
- 6. Photochemistry And Pericyclic Reactions, Jagdamba Singh, Jaya Singh, New age international

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%

^{2.} Organic Chemistry, Jonathan Clayden, Stuart Warren, Nick Greeves, Oxford University Press

Continuous Evaluation	40%

- 1. Give brief account on piezoelectric sensors?
- 2. Explain the principle and significance of phase shifters?
- 3. What could be the role of thin film nanostructures in Transistors?
- 4. Give a comparison of the circuit designs of FET and SET?
- 5. Discuss the working of a quantum cellular automaton using a five-dotdevice?
- 6. Explain in detail the evolution, structure, and theory of RTDs?
- Explain the Relationship between Wang Tiles and Branched Junctions in the context of DNA based computing?
- 8. Discuss the common materials being used in OLED applications?

ELECTIVE COURSE							
Course Code: Course Name:							
MSNST04DSE12	MSNST04DSE12 Nanotechnology- Society, Ethics and Legal Aspects						
	Course Description						
The course will provide and	inderstanding of the socio economic	e impact of nanotechnology and					
to handle the techniques ef	fectively. The intricate relationshi	p between technology, society					
and ethics is also addressed	The course also discuss about the	e laws and legal risks related to					
nanotechnology.	nanotechnology.						
Course Objectives							
1 To impart knowledge about the legal aspects related to nanotechnology.							
2 To impart knowledg	e about the economic impact of nar	notechnology.					
3 Understand the various social impacts of nanotechnology trend and research.							
4 To impart knowledge about the ethics related to nanotechnology.							
Credit Teaching Hours Assessment							

L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End

Semester Evaluation

COURSE OUTCOMES

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Understand the laws and legal risks of nanotechnology.
C02	To provide awareness about socio economic impact of nanotechnology and to handle the techniques effectively.
C03	To enhance the nanotechnology research by taking ethics and public opinion into consideration, professional and ethical responsibility.
C04	Understand the product scaling up in nanotechnology.

Module	Course Contents	
1.0	Economic and societal impact of nanotechnology	14 Hrs
1.1	Socio-Economic Impact of Nanoscale Science- Managing the Na Revolution: Consider the Malcolm Baldrige National Quality C Emerging Nano Economy: Key Drivers, Challenges, and Opportuni	notechnology Criteria - The ties
1.2	Transcending Moore's Law with Molecular Electronics and Nand Semiconductor Scaling as a Model for Nanotechnology Comme Sustaining the Impact of Nanotechnology on Productivity, Susta Equity.	otechnology - ercialization - inability, and
1.3	Navigating Nanotechnology Through Society - Nanotechnology, and Society: Methodological Issues and Innovations for Socia Nanotechnology: Societal Implications: Individual Perspectives - Na and Social Trends - Five Nanotech Social Scenarios-Technologica	Surveillance, I Research - notechnology I Revolutions

	and the Limits of Ethics in an Age of Commercialization - Vision, In	novation, and						
	Policy.							
	Suggested Reading Specific to the module							
1.1	Mihail C. Roco and William Sims Bainbridge —Nanotechnology: Societal							
	Implications IIIndividual Perspectives ^{II} , Springer (2007).							
1.2	Jurgen Schulte Nanotechnology: Global Strategies, Industry	Trends and						
	Applications ^{II} , John Wiley & Sons Ltd (2005).							
1.3	Mark. R. Weisner and Jean-Yves Bottero — Environmental Na	notechnology						
	applications and impact of nanomaterial, The McGraw-Hill Compa	nies (2007)						
2.0	Ethics and Society	14 Hrs						
2.1	Approaching the nano age, Nanotechnology: revolution or evolution	ution, societal						
	dimensions of nanotechnology, ethical dimension of science and technology the							
	language of ethics methods and processes in ethics							
	anguage of earles, memous and processes in earles.							
2.2	Emerging issues: nanomaterials and manufacturing, military and national security							
	implications, sustainability and environment.							
2.3	Nanotechnology in health and medicine, in search of he	althy future,						
	Nanotechnology and personalized medicine.							
Guerrand Danding C 10 (11								
	Suggesieu Keauing Specific to the module							
2.1	Nanotechnology Ethics and Society, Deb Bennett-Woods, CRC Pre	SS						
2.2	Geoffrey Hunt and Michael D. Mehta —Nanotechnology Risk Ethics and Law							
	Earthscan/James & James publication (2006).	,						
2.3	Geoffrey Hunt and Michael. D, Mehta —Nanotechnology: Risk, Et	hics and Law,						
	Earthscan/James & James publication, 2006.							
3.0	Legal Aspects	13 Hrs						
1								

3.1	Protection -Patents, copyright, trade secrets, ownership of nanotech intellectual						
	properties.						
3.2	Regulation- Delegation of nower to agencies example of regulation of						
5.2	nanotechnology environmental regulation regulation of exports political and						
	iudicial control over agency action						
3.3	Liability-civil liability, warranty, class action, criminal liability						
	Suggested Reading Specific to the module						
3.1	Nanotechnology Legal Aspects, Patrick M Boucher, CRC Press						
3.2	Gehrke, Pat J., Nano-Publics: Communicating Nanotechnology Applications,						
	Risks, and Regulations, Palgrave Macmillan (2018)						
3.3	Geoffrey Hunt and Michael D. Mehta -Nanotechnology: Risk, Ethics and Law,						
	Earthscan/James & James publication (2006).						
4.0	Public Perceptions and Education 13 Hrs						
4.0	rubic rerections and Education 15 mis						
4.0	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public						
4.0	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public Interaction Research -Communicating Nanotechnological Risks- A Proposal to						
4.1	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public Interaction Research -Communicating Nanotechnological Risks- A Proposal to Advance Understanding of Nanotechnology's Social Impacts.						
4.1	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public Interaction Research -Communicating Nanotechnological Risks- A Proposal to Advance Understanding of Nanotechnology's Social Impacts. Nanotechnology in the Media: A Preliminary Analysis-Public Engagement with						
4.1	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public Interaction Research -Communicating Nanotechnological Risks- A Proposal to Advance Understanding of Nanotechnology's Social Impacts. Nanotechnology in the Media: A Preliminary Analysis-Public Engagement with Nanoscale Science and Engineering -Nanotechnology: Moving Beyond Risk						
4.1	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public Interaction Research -Communicating Nanotechnological Risks- A Proposal to Advance Understanding of Nanotechnology's Social Impacts. Nanotechnology in the Media: A Preliminary Analysis-Public Engagement with Nanoscale Science and Engineering -Nanotechnology: Moving Beyond Risk Communication Streams and Nanotechnology						
4.1 4.2 4.3	Public Perceptions-Societal Implications of Nanoscience: An Agenda for PublicInteraction Research -Communicating Nanotechnological Risks- A Proposal toAdvance Understanding of Nanotechnology's Social Impacts.Nanotechnology in the Media: A Preliminary Analysis-Public Engagement with Nanoscale Science and Engineering -Nanotechnology: Moving Beyond Risk Communication Streams and NanotechnologyThe (Re) Interpretation of a New Technology Nanotechnology: Societal						
4.0 4.1 4.2 4.3	Public Perceptions-Societal Implications of Nanoscience: An Agenda for PublicInteraction Research -Communicating Nanotechnological Risks- A Proposal toAdvance Understanding of Nanotechnology's Social Impacts.Nanotechnology in the Media: A Preliminary Analysis-Public Engagement withNanoscale Science and Engineering -Nanotechnology: Moving Beyond RiskCommunication Streams and NanotechnologyThe (Re) Interpretation of a New Technology Nanotechnology: SocietalImplications — Individual Perspectives-Historical Comparisons for Anticipating						
4.0 4.1 4.2 4.3	Public Perceptions-Societal Implications of Nanoscience: An Agenda for PublicInteraction Research -Communicating Nanotechnological Risks- A Proposal toAdvance Understanding of Nanotechnology's Social Impacts.Nanotechnology in the Media: A Preliminary Analysis-Public Engagement withNanoscale Science and Engineering -Nanotechnology: Moving Beyond RiskCommunication Streams and NanotechnologyThe (Re) Interpretation of a New Technology Nanotechnology: SocietalImplications — Individual Perspectives-Historical Comparisons for AnticipatingPublic Reactions to Nanotechnology.						
4.1 4.2 4.3	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public Interaction Research -Communicating Nanotechnological Risks- A Proposal to Advance Understanding of Nanotechnology's Social Impacts. Nanotechnology in the Media: A Preliminary Analysis-Public Engagement with Nanoscale Science and Engineering -Nanotechnology: Moving Beyond Risk Communication Streams and Nanotechnology The (Re) Interpretation of a New Technology Nanotechnology: Societal Implications — Individual Perspectives-Historical Comparisons for Anticipating Public Reactions to Nanotechnology.						
4.1 4.2 4.3	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public Interaction Research -Communicating Nanotechnological Risks- A Proposal to Advance Understanding of Nanotechnology's Social Impacts. Nanotechnology in the Media: A Preliminary Analysis-Public Engagement with Nanoscale Science and Engineering -Nanotechnology: Moving Beyond Risk Communication Streams and Nanotechnology The (Re) Interpretation of a New Technology Nanotechnology: Societal Implications — Individual Perspectives-Historical Comparisons for Anticipating Public Reactions to Nanotechnology.						
4.0 4.1 4.2 4.3 4.3	Public Perceptions-Societal Implications of Nanoscience: An Agenda for Public Interaction Research -Communicating Nanotechnological Risks- A Proposal to Advance Understanding of Nanotechnology's Social Impacts. Nanotechnology in the Media: A Preliminary Analysis-Public Engagement with Nanoscale Science and Engineering -Nanotechnology: Moving Beyond Risk Communication Streams and Nanotechnology The (Re) Interpretation of a New Technology Nanotechnology: Societal Implications — Individual Perspectives-Historical Comparisons for Anticipating Public Reactions to Nanotechnology. Implications to Nanotechnology. Harald Throne-Holst, Eivind Soto, Pal Strandbakken, Gerd Scholl, Consumers and						

4.2	Jurgen Schulte — Nanotechnology: Global Strategies, Industry Trends and
	Applications ^{II} , John Wiley & Sons Ltd, 2005.
4.3	Mark. R, Weisner and Jean-Yves Bottero —Environmental Nanotechnology
	applications and impact of nanomateriall, The McGraw-Hill Companies, 2007.

- 1 Mihail C. Roco and William Sims Bainbridge —Nanotechnology: Societal Implications IIIndividual Perspectives^{II}, Springer (2007).
- 2 Mark. R. Weisner and Jean-Yves Bottero Environmental Nanotechnology applications and impact of nanomaterial^{II}, The McGraw-Hill Companies (2007)
- 3 Nanotechnology Legal Aspects, Patrick M Boucher, CRC Press
- 4 Geoffrey Hunt and Michael D. Mehta —Nanotechnology: Risk, Ethics and Law, Earthscan/James & James publication (2006).

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- Harald Throne-Holst, Eivind Soto, Pal Strandbakken, Gerd Scholl, Consumers and Nanotechnology: Deliberative Processes and Methodologies, CRC Press (2018).
- 2 Geoffrey Hunt and Michael D. Mehta —Nanotechnology: Risk, Ethics and Law, Earthscan/James & James publication (2006).
- 3 Jurgen Schulte Nanotechnology: Global Strategies, Industry Trends and Applications^{II}, John Wiley & Sons Ltd (2005).
- 4 Mark. R. Weisner and Jean-Yves Bottero Environmental Nanotechnology applications and impact of nanomaterial^{II}, The McGraw-Hill Companies (2007).

TEACHING LEARNING STRATEGIES

• Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION

• Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%

- 1 How nanotechnology affects the society?
- 2 Discuss about the ethical risk of nanotechnology.
- 3 Discuss about the social issues of nanotechnology in workspace?
- 4 Discuss about the ethical and legal challenges in nanomedical innovations.

			S	Semester I	-			
Elective Course								
Course Code: Course Name:								
	MSNST01DSE13 Prospects and Challenges of Nanotechnology							
			Cou	Irse Descr	iption			
This is a	n elective	course, de	esigned to	build a ba	isic knowl	edge of a	oplications	of various
nanomate	erials in c	lifferent a	reas. First	two mod	lules expla	ain biome	dical appl	ications of
nanomate	erials. The	third mod	ule explain	ns the role	of nanote	chnology i	n other fie	lds such as
civil infr	astructure,	automobi	les, agricu	lture, food	industry	and energ	y storage.	The fourth
module d	escribes th	e concerns	and challe	enges of na	notechnolo	ogy in the a	afore menti	oned areas.
	Course Objectives							
1 To introduce students recent developments and utilization of different nanomaterials in								
var	ious fields	such as me	edicine, au	tomobiles,	agricultur	e etc.		
2 To	make stud	lents aware	e of risk fa	actors, toxi	city and h	ealth issue	es associate	ed with the
util	ization of 1	nanomateri	als					
3 To	understand	l safety par	rameters an	nd protection	on laws as	sociated w	ith application	tions of na-
non	nomaterials.							
4 To understand the advantages of nanomedicine over traditional medicine.								
Credit Teaching Hours Assessment								
L/T	P/I	Total	L/T	P/I	Total	СЕ	ESE	Total

3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Explain the role of nanomaterials in diagnostics
C02	Analyze the advantages of nanomedicine over traditional medicine
C03	Describe advantages and disadvantages of nanobiomedical engineering
C04	Explain emerging applications of nanomaterials in agriculture and its challenges.
C05	List out recent developments and applications of nano materials in different areas.

Module	Course Contents			
1.0	Prospects of nanotechnology in medicine	14 hrs		
1.1	The golden era of nanotechnology; Applications in life slowing di of nanomaterials in diagnostics,	seases. role		
1.2	Dendrimer: A Promising Nanocarrier for Cancer Therapy, nanom cardiology. Synthesis, storage and characteristics of Doxil. Applications of Graphene	nedicines in Biomedical		
1.3	Advantages of nanomedicine over traditional medicine, cha nanotechnology in medicine	allenges of		
Suggested Reading Specific to the module				
1.1	Nazrul Islam, "Nanotechnology: Recent Trends, Emerging Issues a Directions", Nova Publications, 2014	nd Future		

1.2	Yi Ge, Songjun Li, Shenqi Wang, Richard Moore, "Nanomedicine		
	Principles and Perspectives", springer, 2014		
1.3	B.K. Parthasarathy, "Challenges and Opportunities in Nanotechnology". Isha		
	Books 2007		
2.0	Nanabiamedical angineering	11 hrs	
2.0	Tranobioinculcar engineering	14 111 5	
2.1	MRI, Molecular machines, fluorescent imaging, Emission tomograp	hy, medical	
	device implantation, Advantages and disadvantages		
2.2	Nanobiomedical engineering and its challanges, use of nanoo	composites,	
	nanoconcreate and nanofibers in repairing, replanting and substitu	ting bones,	
	tooth and veins.		
2.3	Tissue engineering- Advantages and disadvantages.		
	Suggested Reading Specific to the module		
2.1	Ray, Shariqsrijon Sinha and Bandyopadhyay, Jayita. "Nanotechnolo	ogy-	
	enabled biomedical engineering: Current trends, future scopes, and		
	perspectives" Nanotechnology Reviews, vol. 10, no. 1, 2021, pp. 72	8-743.	
2.2	Liu, S., Lin, R., Pu, C., Huang, J., Zhang, J., & Hou, H. (2022).		
	Nanocomposite Biomaterials for Tissue Engineering and Regenerative		
	Medicine Applications. IntechOpen. doi: 10.5772/intechopen.102417		
2.3	David Williams, "Benefit and risk in tissue engineering", Materials Today,		
	Volume 7, Issue 5, 2004, Pages 24-29		
3.0	Emerging Applications of Nanomaterials	13 hrs	
3.1	Application of Nanotechnology in Civil Infrastructure and automob	iles:	
	Current Status and Future Potential		
3.2	Nanomaterials in agriculture- pesticides, fertilizers and fluid medicines for		
	growth. Advantages and limitations		

3.3	Application in food industry, colorants, anticaking, drying and anti-	microbial		
	agents. Nanomaterials application in solar cells and LEDs.			
	Suggested Reading Specific to the module			
3.1	Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A,			
	Horpibulsuk S, Abdul Kadir A. "Nanoparticles in Construction Materials and			
	Other Applications, and Implications of Nanoparticle Use". Materia	als (Basel).		
	2019 Sep 20;12(19):3052.			
3.2	Y. Ghidan, A., & M. Al Antary, T. (2020). Applications of Nanotechnolo	gy in		
	Agriculture. IntechOpen. doi: 10.5772/intechopen.88390			
3.3	Woei Jye Lau, Kajornsak Faungnawakij, Kuakoon Piyachomkwan,	Uracha		
	Rungsardthong Ruktanonchai, In Micro and Nano Technologies, "Handbook			
	of Nanotechnology Applications", Elsevier, 2021			
4.0	Concerns and challenges of nanotechnology	13 hrs		
4.1	Challenges in nanomaterial formation: Green Nanotechnology appr	oach		
4.2	Toxicity of Nanoparticles. Lack of instrumentation and its maintena	ances and		
	calibration, health problems associate with lungs, skin and vision.			
4.3	Risk factors in handling and storing nanomaterials. Safety parameters and			
	protection laws.			
	Suggested Reading Specific to the module			
4.1	Verma A, Gautam SP, Bansal KK, Prabhakar N, Rosenholm JM. G	reen		
	Nanotechnology: Advancement in Phytoformulation Research. Med	dicines		
	(Basel). 2019 Mar 14;6(1):39			
4.2	Priyanka Ganguly, Ailish Breen and Suresh C. Pillai Toxicity of			
	Nanomaterials: Exposure, Pathways, Assessment, and Recent Adva	nces, ACS		
	Biomater. Sci. Eng. 2018, 4, 7, 2237–2275			
4.3	Maria Batool, Muhammad Faizan Nazar, Muhammad Bilal Tahir, N	/Iuhammad		
	Sagir, Saira Batool, Chapter 10 - Nanomaterial safety regulations, F	Editor(s):		

Muhammad Bilal Tahir, Muhammad Sagir, Abdullah M. Asiri, In Micro and Nano Technologies, Nanomaterials: Synthesis, Characterization, Hazards and Safety, Elsevier, 2021, Pages 259-272

Core Compulsory Readings (Books, Journals, E-sources Websites/ weblinks) List

- Nazrul Islam, "Nanotechnology: Recent Trends, Emerging Issues and Future Directions", Nova Publications 2014
- 2 B.K. Parthasarathy, "Challenges and Opportunities in Nanotechnology", Isha Books 2007
- 3 Toby Shelley, "Nanotechnology: New Promises, New Dangers", Zed Books Ltd 2006

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 1 Yi Ge, Songjun Li, Shenqi Wang, Richard Moore, "Nanomedicine Principles and Perspectives", springer, 2014
- 2 Woei Jye Lau, Kajornsak Faungnawakij, Kuakoon Piyachomkwan, Uracha Rungsardthong Ruktanonchai, In Micro and Nano Technologies, "Handbook of Nanotechnology Applications", Elsevier, 2021
- 3 Ray, Shariqsrijon Sinha and Bandyopadhyay, Jayita. "Nanotechnology-enabled biomedical engineering: Current trends, future scopes, and perspectives" *Nanotechnology Reviews*, vol. 10, no. 1, 2021, pp. 728-743.

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

Sample Questions to test Outcomes.

6 Explain the role of nanomaterials in diagnostics

- 7 Write a short note on advantages of nanomedicine over traditional medicine.
- 8 Explain nanobiomedical engineering
- 9 Describe recent developments and applications of nano materials in agriculture.

Semester IV			
Elective Course			
Course Code:	Course Name:		
MSNSTDSE14	Nanosensors and their Applications		
Course D	escription		
This is an elective course, comprising of four modules. First module gives a brief introduction			
about sensors, their characteristics and physical effects involved in signal transduction. Second			
and third modules explain the fundamental concepts of inorganic and organic/bio sensors.			
Fourth module describes emerging applications of nanosensors in various fields.			
Course Objectives			
5 To understand static and dynamic characteristics of sensors.			

- 6 To explain physical effects involved in signal transduction of sensors.
- 7 To list out different types of inorganic and organic sensors.
- 8 To explain biomedical applications of nanosensors.

Credit			Teaching Hours			Assessment		t
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Explain sensor characteristics and physical effects involved in signal transduction.

C02	Classify various kinds of inorganic nanosensors
C03	Explain general configuration and basic principle of different biosensors
C04	Explain emerging applications of nanosensors in biomedicine
04	Explain energing applications of nanosensors in orometicine
C05	List out different classes of materials used for biosensors.

Module	Course Contents					
1.0	Sensor Characteristics and Physical Effects					
1.1	Active and Passive sensors – Static characteristic - Accuracy, resol	lution, drift,				
	sensitivity, hysteresis, repeatability and linearity – Dynamic charact	teristics				
1.2	First and second order sensors -types of sensors- Temperature Sens	sors, Smoke				
	Sensors - Pressure Sensor -sound sensor-light sensor					
1.3	Physical effects involved in signal transduction- Photoelectric eff	ect – Photo				
	dielectric effect – Photoluminescence effect – Electroluminescence effect	effect – Hall				
	effect – Thermoelectric effect – Piezoelectric effect – Pyroelectric effect —					
	Magneto resistive effect.					
	Suggested Reading Specific to the module					
1.1	Kourosh Kalantar – Zadeh, Benjamin Fry, "Nanotechnology- Enabl	led				
	Sensors", Springer, 2008.					
1.2	Vinod Kumar Khanna, "Nanosensors: Physical, Chemical, and Biological",					
	Publisher: CRC Press,2021					
1.3	Vijay.K.Varadan, Linfeng Chen, Sivathanupillai, "Nanc	otechnology				
	Engineering in Nano and Biomedicine", John Wiley & Sons, 2010.					
2.0	Introduction to inorganic nanosensors	13 hrs				

2.1	Density of states (DOS) – DOS of 3D, 2D, 1D and 0D materials			
2.2	One dimensional gas sensors:- gas sensing with nanostructured thin films -			
	absorption on surfaces - metal oxide modifications by additives - surface			
	modifications			
2.3	Nano optical sensors – nano mechanical sensors – surface plasmon resonance			
	nanosensors - anisotropic, Giant and colossal magneto resistors - magnetic			
	tunneling junctions.			
	Suggested Reading Specific to the module			
2.1	James Datterson Demand Dailou "Solid state physics Introduction to the			
2.1	James Patterson, Bernard Barley, Sond state physics introduction to the			
	theory", Springer, 2007			
2.2	Ghenadii Korotcenkov, "Handbook of Gas Sensor Materials Properties,			
	Advantages and Shortcomings for Applications Volume 1: Conventional			
	Approaches", springer, 2013			
2.3	Vinod Kumar Khanna, "Nanosensors: Physical, Chemical, and Biological",			
	Publisher: CRC Press,2021			
3.0	Fundamental concepts of organic/biosensors 14 hrs			
3.1	General configuration of biosensor; Generations of biosensors; Basic principle			
	of different biosensors: electrochemical, optical, acoustic, piezoelectric, and			
	calorimetric biosensors			
2.2	Dialogical recognition systems: on the dy nucleic soid call and			
3.2	Biological recognition systems: enzyme, antibody, nucleic acid, cell, and			
	tissue; Properties of ideal materials for biosensors			
3.3	Classes of materials for biosensors: polymers, material containing metal			
	complex, sol-gel materials, nanomaterials, composite materials, metal oxides,			
	photonic crystals, and zeolite materials			
	Suggested Reading Specific to the module			
1				

3.1	Aiguo Wu, Waheed S. Khan, "Nanobiosensors: From Design to A	Applica-	
	tions", Wiley-VCH Verlag GmbH, 2020		
3.2	Jerome Schultz, Milan Mrksich, Sangeeta N. Bhatia, David J. Brady, Antonio		
	J. Ricco, David R. Walt, Charles L. Wilkins, "Biosensing: International		
	Research and Development", Springer, 2006		
3.3	Inamuddin, Tauseef Ahmad Rangreez, Mohd Imran Ahamed, Abdu	ıllah M.	
	Asiri "Biosensors – Materials and Applications" Materials Resea	<u>rch Foun-</u>	
	dations, Vol. 47. 2019		
4.0	Emerging Applications of Nanosensors	13 hrs	
4 1	Cantilever array sensors - Cantilever sensors for diagnosis of diabet	tes mellitus	
1.1	- Cantilever sensors for cancer diagnosis	es mentus	
4.2	Nanotube based sensors - Nanotube based sensors for DNA detection -		
	Nanotube based sensors for capnography		
43	Nanowire based sensors - Nanowire based electrical detection of size	nole viruses	
ч.5	- Nanowire based electrical detection of biomolecules		
	Suggested Reading Specific to the module		
4 1			
	Hans Peter Lang, Martin Hegner, Christoph Gerber, "Cantilever array sen-		
	sors", Materials Today, Volume 8, Issue 4, 2005, Pages 30-36		
4.2	Generati Generati Aultit Kenner Geinerature (CI + 10 C 1 + 1		
	Swasti Saxena, Ankit Kumar Srivastava, "Chapter 10 - Carbon nanotube-		
	based sensors and their application", Editor(s): Sabu Thomas, Yves Grohens,		
	Guillaume Vignaud, Nandakumar Kalarikkal, Jemy James, Micro and Nano		
1.2	rechnologies, Nano-Optics, Elsevier, 2020, Pages 265-291		
4.3	Fernando Patolsky, Charles M. Lieber, "Nanowire nanosensors", M	laterials	
	Today, Volume 8, Issue 4, 2005, Pages 20-28		

- 4 Kourosh Kalantar Zadeh, Benjamin Fry, "Nanotechnology- Enabled Sensors", Springer, 2008.
- Ramon Pallas-Areny, John G. Webster, "Sensors and signal conditioning" John Wiley & Sons, 2001.
- 6 Aiguo Wu, Waheed S. Khan, "Nanobiosensors: From Design to Applications", Wiley-VCH Verlag GmbH, 2020

- 4 Vijay.K.Varadan, Linfeng Chen, Sivathanupillai, "Nanotechnology Engineering in Nano and Biomedicine", John Wiley & Sons, 2010.
- 5 Vinod Kumar Khanna, "Nanosensors: Physical, Chemical, and Biological", Publisher: CRC Press,2021
- 6 Jerome Schultz, Milan Mrksich, Sangeeta N. Bhatia, David J. Brady, Antonio J. Ricco, David R. Walt, Charles L. Wilkins, "Biosensing: International Research and Development", Springer, 2006

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semester Evaluation	60%
Continuous Evaluation	40%

- 1. Explain the physical effects involved in signal transduction of sensors.
- 2. Write a short note on inorganic nanosensors.
- 3. Describe general configuration and basic principle of biosensors
- 4. Explain different classes of materials for biosensors.

Semester IV			
Elective Course			
Course Code:	Course Name:		
MSNST04DSE15	Nanorobotics		

Course Description

The course introduces the basic concepts of fabrication, challenges and applications in the field of nanorobotics. Principles and manipulation of nanostructures advantageous for the fabrication of functional nanobots are covered. Basic understanding of diverse application fields of nanorobots are also included.

Course Objectives

- 1. To learn the basic concepts of principles, procedures and considerations in nanorobotics
- 2. To study the properties of different nanomaterials for being used in nanorobotics
- 3. To understand the challenges associated with the development of nanorobotics and ways to address them
- 4. To understand the application fields of nanobots

Credit		Teaching Hours		I	Assessmen	t		
L/T	P/I	Total	L/T	P/I	Total	CE	ESE	Total
3	0	3	54	0	54	40	60	100

L/T: Lecture/ Tutorial; P/I: Practical/Internship; CE: Continuous Evaluation, ESE: End

Semester Evaluation

Course outcomes

Course Learning Outcomes: At the end of the course, the student will be able to -

C01	Explain the most common application areas of nanorobots
C02	Analyze the properties of nanomaterials for fabrication of specific nanobots
C03	List the challenges associated with design of nanobots and the ways to address
	them
C04	Explain how nanomaterials can be manipulated for robot applications
0	

Module	Course Contents	No. of Hrs
1.0	Introduction to Nanorobotics	13

1.1	Introduction to Nanorobotics, Research History, Milestones, Future		
	perspectives, opportunities and challenges		
1.2	Different types of nanorobots, application areas, challenges, Grey goo		
1.3	Market niche and Global scenario of nanorobotics		
	Suggested Reading Specific to the module		
1.1	Nanorobotics: Current Approaches and Techniques, Springer Newyork,		
	Constantinos Mavroidis, Antoine Ferreira, 2013		
1.2	M. Sitti, "Micro- and Nano-Scale Robotics", Proceedings of the 2004 American		
	Control Conference, Massachusetts, June 30 -July 2, 2004, pp 1-8 (2004)		
1.3	Nanorobotics: Current Approaches and Techniques, Springer Newyork,		
	Constantinos Mavroidis, Antoine Ferreira, 2013		
2.0	Molecules and structures in nanorobotics14		
2.1	Nanostructures useful in nanorobotics- carbon nanotubes for nanotweezers,		
	nanojoints, linear bearings and other nanomanipulations, fullerenes		
2.2	Supramolecular structures in nano and molecular machinary: rotaxanes,		
	catenanes etc		
2.3	Different nanomachines: nanoshuttles, nanoturnstiles, nanorotors,		
	nanoswitches, nanogears, naoratchets, nanocars, nanoswimmers etc		
2.4	Molecular motor Type-I, Molecular motor Type-II, molecular elevators,		
	Modified molecular motors, molecular pedals, molecular scissors		
	Suggested Reading Specific to the module		
2.1	Hertel, T., Martel, R., Avouris, P., 1998, "Manipulation of individual carbon		
	nanotubes and their interaction with surfaces," Journal of Physical Chemistry B,		
	Vol. 102, pp.910-915.		
2.2	Molecular Devices and Machines: A Journey Into the Nanoworld, Wiley,		
	Vincenzo Balzani, Margherita Venturi, Alberto Credi 2013		
2.3	Molecular Devices and Machines: A Journey Into the Nanoworld, Wiley,		
	Vincenzo Balzani, Margherita Venturi, Alberto Credi 2013		
2.4	Molecules at Work: Selfassembly, Nanomaterials, Molecular machinery, Wiley,		

	Bruno Pignataro · 2012		
3.0	Issues and Challenges	13	
3.1	Challenges associated with the development of nanobots: High surface area and		
	related surface phenomenon, Motion of nanosized entities		
3.2	Viscosity in nanodomains, Friction due to miniaturization, Non rigidity, Low		
	inertia in nanodomains, Peclect number		
3.3	Challenges associated with powering the bots, biocompatability and toxicity,		
	application specific challenges		
	Suggested Reading Specific to the module		
3.1	Nanorobotics: Current Approaches and Techniques, Springer New York,		
	Constantinos Mavroidis, Antoine Ferreira, 2013		
3.2	Sharma, N. N., & Mittal, R. K. (2008). Nanorobot movement: Challenges and		
	biologically inspired solutions. International journal on smart	sensing and	
	intelligent systems, 1(1), 87.		
3.3	Nanorobotics: Current Approaches and Techniques, Springe	r Newyork,	
	Constantinos Mavroidis, Antoine Ferreira, 2013		
4.0	Fabrication of nanorobots	14	
4.1	Manipulation of Nanoparticles: Manipulation using SPM, TEM	f, SEM etc,	
	CNTs, manipulation of biological materials, DNA origami, Nanosc	cale gripping	
4.2	Joining nanostructures- nanosoldering, nanowelding, nanogluing, Sintering,		
	Chemical bonding		
4.3	Cutting nanostructues: Mechanical cutting, Laser ablation		
4.4	Functional nanobot prototypes, Application areas- medicine	e, dentistry,	
	diagnosis, Surgery, Gene therapy, Sensors, Environmental remedia	tion	
	Suggested Reading Specific to the module		
4.1	Atomic Force Microscopy Based Nanorobotics, Modelling, Simul	lation, Setup	
	Building and Experiments, Springer Berlin Heidelberg, Hui Xie, Cagdas Onal,		
	Stéphane Régnier, Metin Sitti, 2011		
4.2	Sierra, D. P., Weir, N. A., & Jones, J. F. (2005). A review of researc	h in the field	

	of nanorobotics, Molhave, K., Madsen, D. N., Dohn, S., Boggild, P., 2004,		
	"Constructing, connecting and soldering nanostructures by environmental		
	electron beam deposition," Nanotechnology, Vol. 15, pp. 1047-1053.		
4.3	Sierra, D. P., Weir, N. A., & Jones, J. F. (2005). A review of research in the field		
	of nanorobotics.		
4.4	Nanorobotics: Intelligent Drug Delivery Using Biohybrid, Fouad Sabry, 2022		

- Nanorobotics: Current Approaches and Techniques, Springer Newyork, Constantinos Mavroidis, Antoine Ferreira, 2013
- 2 Molecular Devices and Machines: A Journey Into the Nanoworld, Wiley, Vincenzo Balzani, Margherita Venturi, Alberto Credi 2013
- 3 Molecules at Work: Selfassembly, Nanomaterials, Molecular machinery, Wiley, Bruno Pignataro · 2012
- 4 Atomic Force Microscopy Based Nanorobotics, Modelling, Simulation, Setup Building and Experiments, Springer Berlin Heidelberg, Hui Xie, Cagdas Onal, Stéphane Régnier, Metin Sitti, 2011
- 5 Sierra, D. P., Weir, N. A., & Jones, J. F. (2005). A review of research in the field of nanorobotics.

Core Suggested Readings (Books, Journals, E-sources Websites/ weblinks) List

- 4 Nanorobotics: Intelligent Drug Delivery Using Biohybrid, Fouad Sabry, 2022
- 5 "Constructing, connecting and soldering nanostructures by environmental electron beam deposition," Nanotechnology, Vol. 15, pp. 1047-1053.
- 6 Hertel, T., Martel, R., Avouris, P., 1998, "Manipulation of individual carbon nanotubes and their interaction with surfaces," Journal of Physical Chemistry B, Vol. 102, pp.910-915.

TEACHING LEARNING STRATEGIES

- Assignments, Internal examinations, Seminars, Semester Viva Voce MODE OF TRANSACTION
- Off-line mode, Black Board and Chalk

ASSESSMENT RUBRICS

	Marks
End Semaster Evaluation	60%
End Semester Evaluation	0078
Continuous Evaluation	40%

- 1. Write a note on the applications of nanorobots in gene therapy?
- 2. How low inertia in the nano-domains would affect the design of nanorobots?
- 3. How can you use CNTs as nanotweezers?
- 4. Explain the design of a nanocar based on fullerene?
- 5. Give a note on nanobots being used for environmental remediation?